Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.
Sudoku designs (Bailey et al., 2008<doi:10.1080/00029890.2008.11920542>) can be used as experimental designs which tackle one extra source of variation than conventional Latin square designs. Although Sudoku designs are similar to Latin square designs, only addition is the region concept. Some very important functions related to row-column designs as well as block designs along with basic functions are included in this package.
Fast SVMlight reader and writer. SVMlight is most commonly used format for storing sparse matrices (possibly with some target variable) on disk. For additional information about SVMlight format see <http://svmlight.joachims.org/>.
Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable. Test of independence and feature screening for classification problems can be implemented via the two dependence measures. For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.
Package provides a set of tools for robust estimation and inference for models with sample selectivity and endogenous treatment model. For details, see Zhelonkin and Ronchetti (2021) <doi:10.18637/jss.v099.i04>.
Combine topic modeling and sentiment analysis to identify individual students gaps, and highlight their strengths and weaknesses across predefined competency domains and professional activities.
An open source platform for validation and process control. Tools to analyze data from internal validation of forensic short tandem repeat (STR) kits are provided. The tools are developed to provide the necessary data to conform with guidelines for internal validation issued by the European Network of Forensic Science Institutes (ENFSI) DNA Working Group, and the Scientific Working Group on DNA Analysis Methods (SWGDAM). A front-end graphical user interface is provided. More information about each function can be found in the respective help documentation.
This package contains statistical methods to analyze graphs, such as graph parameter estimation, model selection based on the Graph Information Criterion, statistical tests to discriminate two or more populations of graphs, correlation between graphs, and clustering of graphs. References: Takahashi et al. (2012) <doi:10.1371/journal.pone.0049949>, Fujita et al. (2017) <doi:10.3389/fnins.2017.00066>, Fujita et al. (2017) <doi:10.1016/j.csda.2016.11.016>, Fujita et al. (2019) <doi:10.1093/comnet/cnz028>.
Estimates the authors or speakers of texts. Methods developed in Huang, Perry, and Spirling (2020) <doi:10.1017/pan.2019.49>. The model is built on a Bayesian framework in which the distinctiveness of each speaker is defined by how different, on average, the speaker's terms are to everyone else in the corpus of texts. An optional cross-validation method is implemented to select the subset of terms that generate the most accurate speaker predictions. Once a set of terms is selected, the model can be estimated. Speaker distinctiveness and term influence can be recovered from parameters in the model using package functions. Once fitted, the model can be used to predict authorship of new texts.
This package provides a template system based on AdminLTE3 (<https://adminlte.io/themes/v3/>) theme. Comes with default theme that can be easily customized. Developers can upload modified templates on Github', and users can easily download templates with RStudio project wizard. The key features of the default template include light and dark theme switcher, resizing graphs, synchronizing inputs across sessions, new notification system, fancy progress bars, and card-like flip panels with back sides, as well as various of HTML tool widgets.
This package provides functions for sample size estimation and simulation in clinical trials. Includes methods for selecting the best group using the Indifference-zone approach, as well as designs for non-inferiority, equivalence, and negative binomial models. For the sample size calculation for non-inferiority of vaccines, the approach is based on Fleming, Powers, and Huang (2021) <doi:10.1177/1740774520988244>. The Indifference-zone approach is based on Sobel and Huyett (1957) <doi:10.1002/j.1538-7305.1957.tb02411.x> and Bechhofer, Santner, and Goldsman (1995, ISBN:978-0-471-57427-9).
It contains soft clustering algorithms, in particular approaches derived from rough set theory: Lingras & West original rough k-means, Peters refined rough k-means, and PI rough k-means. It also contains classic k-means and a corresponding illustrative demo.
This package provides a set of functions that can be used to spatially thin species occurrence data. The resulting thinned data can be used in ecological modeling, such as ecological niche modeling.
Uncertainty propagation analysis in spatial environmental modelling following methodology described in Heuvelink et al. (2007) <doi:10.1080/13658810601063951> and Brown and Heuvelink (2007) <doi:10.1016/j.cageo.2006.06.015>. The package provides functions for examining the uncertainty propagation starting from input data and model parameters, via the environmental model onto model outputs. The functions include uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte Carlo (MC) techniques. Uncertain variables are described by probability distributions. Both numerical and categorical data types are handled. Spatial auto-correlation within an attribute and cross-correlation between attributes is accommodated for. The MC realizations may be used as input to the environmental models called from R, or externally.
Easy-to-use interface to X-13-ARIMA-SEATS, the seasonal adjustment software by the US Census Bureau. It offers full access to almost all options and outputs of X-13, including X-11 and SEATS, automatic ARIMA model search, outlier detection and support for user defined holiday variables, such as Chinese New Year or Indian Diwali. A graphical user interface can be used through the seasonalview package. Uses the X-13-binaries from the x13binary package.
This package provides functions to estimate the density and size of a spatially distributed animal population sampled with an array of passive detectors, such as traps, or by searching polygons or transects. Models incorporating distance-dependent detection are fitted by maximizing the likelihood. Tools are included for data manipulation and model selection.
Algorithms to compute spherical k-means partitions. Features several methods, including a genetic and a fixed-point algorithm and an interface to the CLUTO vcluster program.
We build an Susceptible-Infectious-Recovered (SIR) model where the rate of infection is the sum of the household rate and the community rate. We estimate the posterior distribution of the parameters using the Metropolis algorithm. Further details may be found in: F Scott Dahlgren, Ivo M Foppa, Melissa S Stockwell, Celibell Y Vargas, Philip LaRussa, Carrie Reed (2021) "Household transmission of influenza A and B within a prospective cohort during the 2013-2014 and 2014-2015 seasons" <doi:10.1002/sim.9181>.
Quantifies clustering quality by measuring both cohesion within clusters and separation between clusters. Implements advanced silhouette width computations for diverse clustering structures, including: simplified silhouette (Van der Laan et al., 2003) <doi:10.1080/0094965031000136012>, Probability of Alternative Cluster normalization methods (Raymaekers & Rousseeuw, 2022) <doi:10.1080/10618600.2022.2050249>, fuzzy clustering and silhouette diagnostics using membership probabilities (Campello & Hruschka, 2006; Menardi, 2011; Bhat & Kiruthika, 2024) <doi:10.1016/j.fss.2006.07.006>, <doi:10.1007/s11222-010-9169-0>, <doi:10.1080/23737484.2024.2408534>, and multi-way clustering extensions such as block and tensor clustering (Schepers et al., 2008; Bhat & Kiruthika, 2025) <doi:10.1007/s00357-008-9005-9>, <doi:10.21203/rs.3.rs-6973596/v1>. Provides tools for computation and visualization (Rousseeuw, 1987) <doi:10.1016/0377-0427(87)90125-7> to support robust and reproducible cluster diagnostics across standard, soft, and multi-way clustering settings.
Explore synesthesia consistency test data, calculate consistency scores, and classify participant data as valid or invalid.
This is a modification of HDoutliers package. The HDoutliers algorithm is a powerful unsupervised algorithm for detecting anomalies in high-dimensional data, with a strong theoretical foundation. However, it suffers from some limitations that significantly hinder its performance level, under certain circumstances. This package implements the algorithm proposed in Talagala, Hyndman and Smith-Miles (2019) <arXiv:1908.04000> for detecting anomalies in high-dimensional data that addresses these limitations of HDoutliers algorithm. We define an anomaly as an observation that deviates markedly from the majority with a large distance gap. An approach based on extreme value theory is used for the anomalous threshold calculation.
Set of tools to import, summarize, wrangle, and visualize data. These functions were originally written based on the needs of the various synthesis working groups that were supported by the National Center for Ecological Analysis and Synthesis (NCEAS). These tools are meant to be useful inside and outside of the context for which they were designed.
This package provides methods for decomposing seasonal data: STR (a Seasonal-Trend time series decomposition procedure based on Regression) and Robust STR. In some ways, STR is similar to Ridge Regression and Robust STR can be related to LASSO. They allow for multiple seasonal components, multiple linear covariates with constant, flexible and seasonal influence. Seasonal patterns (for both seasonal components and seasonal covariates) can be fractional and flexible over time; moreover they can be either strictly periodic or have a more complex topology. The methods provide confidence intervals for the estimated components. The methods can also be used for forecasting.
Computes the entire solution paths for Support Vector Regression(SVR) with respect to the regularization parameter, lambda and epsilon in epsilon-intensive loss function, efficiently. We call each path algorithm svrpath and epspath. See Wang, G. et al (2008) <doi:10.1109/TNN.2008.2002077> for details regarding the method.