Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a method for comparing the results of two binary diagnostic tests using paired data. Users can rapidly perform descriptive and inferential statistics in a single function call. Options permit users to select which parameters they are interested in comparing and methods for correction for multiple comparisons. Confidence intervals are calculated using the methods with the best coverage. Hypothesis tests use the methods with the best asymptotic performance. A summary of the methods is available in Roldán-Nofuentes (2020) <doi:10.1186/s12874-020-00988-y>. This package is targeted at clinical researchers who want to rapidly and effectively compare results from binary diagnostic tests.
This package provides new layer functions to tmap for drawing glyphs. A glyph is a small chart (e.g., donut chart) shown at specific map locations to visualize multivariate or time-series data. The functions work with the syntax of tmap and allow flexible control over size, layout, and appearance.
Utilizing the OpenAI API as the back end (<https://platform.openai.com/docs/api-reference>), TheOpenAIR offers R wrapper functions for the ChatGPT endpoint and several high-level functions that enable the integration of ChatGPT capabilities in diverse data-related tasks, such as data cleansing and automated analytics script generation.
It provides generic methods that are used by more than one package, avoiding conflicts. This package will be imported by tidySingleCellExperiment and tidyseurat'.
This package implements the multiway sparse clustering approach of M. Wang and Y. Zeng, "Multiway clustering via tensor block models". Advances in Neural Information Processing System 32 (NeurIPS), 715-725, 2019.
This package provides a wrapper to a set of algorithms designed to recognise positional cues present in hierarchical for-human Tables (which would normally be interpreted visually by the human brain) to decompose, then reconstruct the data into machine-readable LongForm Dataframes.
This package provides functions to build interactive dashboards combining the Tabler UI Kit with Shiny', making it easy to create professional-looking web applications. Tabler is fully responsive and compatible with all modern browsers. Offers customizable layouts and components built with HTML5 and CSS3'. The underlying Tabler (<https://github.com/tabler/tabler>) and Tabler Icons (<https://github.com/tabler/tabler-icons>) were pre-built from source to eliminate the need for Node.js and NPM on package installation.
Randomizing exams with LaTeX'. If you can compile your main document with LaTeX', the program should be able to compile the randomized versions without much extra effort when creating the document.
Data handling and estimation functions for animal movement estimation from archival or satellite tags. Helper functions are included for making image summaries binned by time interval from Markov Chain Monte Carlo simulations.
Implementation of target diagrams using lattice and ggplot2 graphics. Target diagrams provide a graphical overview of the respective contributions of the unbiased RMSE and MBE to the total RMSE (Jolliff, J. et al., 2009. "Summary Diagrams for Coupled Hydrodynamic-Ecosystem Model Skill Assessment." Journal of Marine Systems 76: 64â 82.).
This package provides a framework to download, parse, and store text datasets on the disk and load them when needed. Includes various sentiment lexicons and labeled text data sets for classification and analysis.
Defines a graphics device and functions for graphical output in terminal emulators that support graphical output. Currently terminals that support the Terminal Graphics Protocol (<https://sw.kovidgoyal.net/kitty/graphics-protocol/>) and terminal supporting Sixel (<https://en.wikipedia.org/wiki/Sixel>) are supported.
This package provides a collection of functions to deal with the truncated univariate and multivariate normal and Student distributions, described in Botev (2017) <doi:10.1111/rssb.12162> and Botev and L'Ecuyer (2015) <doi:10.1109/WSC.2015.7408180>.
This package provides a simple interface to search available data provided by Theia (<https://theia.cnes.fr>), download it, and manage it. Data can be downloaded based on a search result or from a cart file downloaded from Theia website.
This package provides a collection of recipe datasets scraped from <https://www.allrecipes.com/>, containing two complementary datasets: allrecipes with 14,426 general recipes, and cuisines with 2,218 recipes categorized by country of origin. Both datasets include comprehensive recipe information such as ingredients, nutritional facts (calories, fat, carbs, protein), cooking times (preparation and cooking), ratings, and review metadata. All data has been cleaned and standardized, ready for analysis.
This package provides tools to work with template code and text in R. It aims to provide a simple substitution mechanism for R-expressions inside these templates. Templates can be written in other languages like SQL', can simply be represented by characters in R, or can themselves be R-expressions or functions.
This package provides a collection of methods to estimate parameters of different tempered stable distributions (TSD). Currently, there are seven different tempered stable distributions to choose from: Tempered stable subordinator distribution, classical TSD, generalized classical TSD, normal TSD, modified TSD, rapid decreasing TSD, and Kim-Rachev TSD. The package also provides functions to compute density and probability functions and tools to run Monte Carlo simulations. This package has already been used for the estimation of tempered stable distributions (Massing (2023) <arXiv:2303.07060>). The following references form the theoretical background for various functions in this package. References for each function are explicitly listed in its documentation: Bianchi et al. (2010) <doi:10.1007/978-88-470-1481-7_4> Bianchi et al. (2011) <doi:10.1137/S0040585X97984632> Carrasco (2017) <doi:10.1017/S0266466616000025> Feuerverger (1981) <doi:10.1111/j.2517-6161.1981.tb01143.x> Hansen et al. (1996) <doi:10.1080/07350015.1996.10524656> Hansen (1982) <doi:10.2307/1912775> Hofert (2011) <doi:10.1145/2043635.2043638> Kawai & Masuda (2011) <doi:10.1016/j.cam.2010.12.014> Kim et al. (2008) <doi:10.1016/j.jbankfin.2007.11.004> Kim et al. (2009) <doi:10.1007/978-3-7908-2050-8_5> Kim et al. (2010) <doi:10.1016/j.jbankfin.2010.01.015> Kuechler & Tappe (2013) <doi:10.1016/j.spa.2013.06.012> Rachev et al. (2011) <doi:10.1002/9781118268070>.
Computes various entropies of given time series. This is the initial version that includes ApEn() and SampEn() functions for calculating approximate entropy and sample entropy. Approximate entropy was proposed by S.M. Pincus in "Approximate entropy as a measure of system complexity", Proceedings of the National Academy of Sciences of the United States of America, 88, 2297-2301 (March 1991). Sample entropy was proposed by J. S. Richman and J. R. Moorman in "Physiological time-series analysis using approximate entropy and sample entropy", American Journal of Physiology, Heart and Circulatory Physiology, 278, 2039-2049 (June 2000). This package also contains FastApEn() and FastSampEn() functions for calculating fast approximate entropy and fast sample entropy. These are newly designed very fast algorithms, resulting from the modification of the original algorithms. The calculated values of these entropies are not the same as the original ones, but the entropy trend of the analyzed time series determines equally reliably. Their main advantage is their speed, which is up to a thousand times higher. A scientific article describing their properties has been submitted to The Journal of Supercomputing and in present time it is waiting for the acceptance.
Method to estimate the effect of the trend in predictor variables on the observed trend of the response variable using mixed models with temporal autocorrelation. See Fernández-Martà nez et al. (2017 and 2019) <doi:10.1038/s41598-017-08755-8> <doi:10.1038/s41558-018-0367-7>.
This package contains functions for applying the T^2-test for equivalence. The T^2-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the Mahalanobis distance. For multivariate normally distributed data the T^2-test for equivalence is exact and UMPI. The function T2EQ() implements the T^2-test for equivalence according to Wellek (2010) <DOI:10.1201/ebk1439808184>. The function T2EQ.dissolution.profiles.hoffelder() implements a variant of the T^2-test for equivalence according to Hoffelder (2016) <http://www.ecv.de/suse_item.php?suseId=Z|pi|8430> for the equivalence comparison of highly variable dissolution profiles.
Social Relation Model (SRM) analyses for single or multiple round-robin groups are performed. These analyses are either based on one manifest variable, one latent construct measured by two manifest variables, two manifest variables and their bivariate relations, or two latent constructs each measured by two manifest variables. Within-group t-tests for variance components and covariances are provided for single groups. For multiple groups two types of significance tests are provided: between-groups t-tests (as in SOREMO) and enhanced standard errors based on Lashley and Bond (1997) <DOI:10.1037/1082-989X.2.3.278>. Handling for missing values is provided.
This package provides a set of tools for descriptive and predictive analysis of time series data. That includes functions for interactive visualization of time series objects and as well utility functions for automation time series forecasting.
This package implements the TabNet model by Sercan O. Arik et al. (2019) <doi:10.48550/arXiv.1908.07442> with Coherent Hierarchical Multi-label Classification Networks by Giunchiglia et al. <doi:10.48550/arXiv.2010.10151> and provides a consistent interface for fitting and creating predictions. It's also fully compatible with the tidymodels ecosystem.
Prediction intervals for ARIMA and structural time series models using importance sampling approach with uninformative priors for model parameters, leading to more accurate coverage probabilities in frequentist sense. Instead of sampling the future observations and hidden states of the state space representation of the model, only model parameters are sampled, and the method is based solving the equations corresponding to the conditional coverage probability of the prediction intervals. This makes method relatively fast compared to for example MCMC methods, and standard errors of prediction limits can also be computed straightforwardly.