Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package defines S4 classes for single-cell genomic data and associated information, such as dimensionality reduction embeddings, nearest-neighbor graphs, and spatially-resolved coordinates. It provides data access methods and R-native hooks to ensure the Seurat object is familiar to other R users.
This package provides a color picker that can be used as an input in Shiny apps or Rmarkdown documents. The color picker supports alpha opacity, custom color palettes, and many more options. A plot color helper tool is available as an RStudio Addin, which helps you pick colors to use in your plots. A more generic color picker RStudio Addin is also provided to let you select colors to use in your R code.
This package provides optimized functions and flexible combinatorial iterators implemented in C++ for solving problems in combinatorics and computational mathematics. It utilizes the RMatrix class from RcppParallel for thread safety. There are combination/permutation functions with constraint parameters that allow for generation of all results of a vector meeting specific criteria. It is capable of generating specific combinations/permutations which sets up nicely for parallelization as well as random sampling. Gmp support permits exploration where the total number of results is large. Additionally, there are several high performance number theoretic functions that are useful for problems common in computational mathematics.
Servr provides an HTTP server in R to serve static files, or dynamic documents that can be converted to HTML files (e.g., R Markdown) under a given directory.
Phangorn is a package for phylogenetic analysis in R. It supports estimation of phylogenetic trees and networks using Maximum Likelihood, Maximum Parsimony, distance methods and Hadamard conjugation.
This is a pure R implementation of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with optional restarts (IPOP-CMA-ES).
The Rcpp package provides R functions as well as C++ classes which offer a seamless integration of R and C++. Many R data types and objects can be mapped back and forth to C++ equivalents which facilitates both writing of new code as well as easier integration of third-party libraries. Documentation about Rcpp is provided by several vignettes included in this package, via the Rcpp Gallery site at <http://gallery.rcpp.org>, the paper by Eddelbuettel and Francois (2011, JSS), and the book by Eddelbuettel (2013, Springer); see citation("Rcpp") for details on these last two.
This package is a collection of several algorithms to obtain archetypoids with small and large databases and with both classical multivariate data and functional data (univariate and multivariate). Some of these algorithms also detect anomalies (outliers).
Cluster ensembles are collections of individual solutions to a given clustering problem which are useful or necessary to consider in a wide range of applications. This R package provides an extensible computational environment for creating and analyzing cluster ensembles, with basic data structures for representing partitions and hierarchies, and facilities for computing on them, including methods for measuring proximity and obtaining consensus and secondary clusterings.
This package provides a system for generating extendable and customizable heatmaps for exploring complex datasets, including big data and data with multiple data types.
This package lets you compute the median ranking according to Kemeny's axiomatic approach. Rankings can or cannot contain ties, rankings can be both complete or incomplete. The package contains both branch-and-bound algorithms and heuristic solutions recently proposed. The searching space of the solution can either be restricted to the universe of the permutations or unrestricted to all possible ties. The package also provides some useful utilities for deal with preference rankings, including both element-weight Kemeny distance and correlation coefficient.
Bayesian density estimates for univariate continuous random samples are provided using the Bayesian inference engine paradigm. The engine options are: Hamiltonian Monte Carlo, the no U-turn sampler, semiparametric mean field variational Bayes and slice sampling. The methodology is described in Wand and Yu (2020), arXiv:2009.06182.
Strex is a collection of string manipulation functions not provided by the stringi or stringr packages. The foremost of these is the extraction of numbers from strings. There are many other handy functionalities in strex.
This package implements the diffusion map method of data parametrization, including creation and visualization of diffusion maps, clustering with diffusion K-means and regression using the adaptive regression model.
This package creates "Table 1", i.e., description of baseline patient characteristics, which is essential in every medical research. It supports both continuous and categorical variables, as well as p-values and standardized mean differences. Weighted data are supported via the survey package.
This package provides a fast parallelized alternative to R's native dist function to calculate distance matrices for continuous, binary, and multi-dimensional input matrices, which supports a broad variety of predefined distance functions from other R packages, as well as user- defined functions written in C++. For ease of use, the parDist function extends the signature of the dist function and uses the same parameter naming conventions as distance methods of existing R packages.
This package provides tools to compares k samples using the Anderson-Darling test, Kruskal-Wallis type tests with different rank score criteria, Steel's multiple comparison test, and the Jonckheere-Terpstra (JT) test. It computes asymptotic, simulated or (limited) exact P-values, all valid under randomization, with or without ties, or conditionally under random sampling from populations, given the observed tie pattern. Except for Steel's test and the JT test it also combines these tests across several blocks of samples.
This is a port of the type guesser from the readr package, the so-called readr first edition parsing engine, now superseded by vroom.
This package provides simple and crisp publication-quality graphics for the ExPosition family of packages. See An ExPosition of the Singular Value Decomposition in R (Beaton et al 2014) <doi:10.1016/j.csda.2013.11.006>.
This package covers many important models used in marketing and micro-econometrics applications, including Bayes Regression (univariate or multivariate dep var), Bayes Seemingly Unrelated Regression (SUR), Binary and Ordinal Probit, Multinomial Logit (MNL) and Multinomial Probit (MNP), Multivariate Probit, Negative Binomial (Poisson) Regression, Multivariate Mixtures of Normals (including clustering), Dirichlet Process Prior Density Estimation with normal base, Hierarchical Linear Models with normal prior and covariates, Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates, Hierarchical Negative Binomial Regression Models, Bayesian analysis of choice-based conjoint data, Bayesian treatment of linear instrumental variables models, Analysis of Multivariate Ordinal survey data with scale usage heterogeneity, and Bayesian Analysis of Aggregate Random Coefficient Logit Models.
This package provides a computational toolbox for recursive partitioning. The core of the package is ctree(), an implementation of conditional inference trees which embed tree-structured regression models into a well defined theory of conditional inference procedures. This non-parametric class of regression trees is applicable to all kinds of regression problems, including nominal, ordinal, numeric, censored as well as multivariate response variables and arbitrary measurement scales of the covariates. Based on conditional inference trees, cforest() provides an implementation of Breiman's random forests. The function mob() implements an algorithm for recursive partitioning based on parametric models (e.g. linear models, GLMs or survival regression) employing parameter instability tests for split selection. Extensible functionality for visualizing tree-structured regression models is available.
This package provides a vectorized R function for calculating probabilities from a standard bivariate normal CDF.
This package holds the database for the extrafont package.
This package provides a system for embedded scientific computing and reproducible research with R. The OpenCPU server exposes a simple but powerful HTTP API for RPC and data interchange with R. This provides a reliable and scalable foundation for statistical services or building R web applications. The OpenCPU server runs either as a single-user development server within the interactive R session, or as a multi-user stack based on Apache2.