Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Resources, tutorials, and code snippets dedicated to exploring the intersection of quantum computing and artificial intelligence (AI) in the context of analyzing Cluster of Differentiation 4 (CD4) lymphocytes and optimizing antiretroviral therapy (ART) for human immunodeficiency virus (HIV). With the emergence of quantum artificial intelligence and the development of small-scale quantum computers, there's an unprecedented opportunity to revolutionize the understanding of HIV dynamics and treatment strategies. This project leverages the R package qsimulatR (Ostmeyer and Urbach, 2023, <https://CRAN.R-project.org/package=qsimulatR>), a quantum computer simulator, to explore these applications in quantum computing techniques, addressing the challenges in studying CD4 lymphocytes and enhancing ART efficacy.
This package implements the Quantile Composite-based Path Modeling approach (Davino and Vinzi, 2016 <doi:10.1007/s11634-015-0231-9>; Dolce et al., 2021 <doi:10.1007/s11634-021-00469-0>). The method complements the traditional PLS Path Modeling approach, analyzing the entire distribution of outcome variables and, therefore, overcoming the classical exploration of only average effects. It exploits quantile regression to investigate changes in the relationships among constructs and between constructs and observed variables.
Fits classical sparse regression models with efficient active set algorithms by solving quadratic problems as described by Grandvalet, Chiquet and Ambroise (2017) <doi:10.48550/arXiv.1210.2077>. Also provides a few methods for model selection purpose (cross-validation, stability selection).
Nonlinear machine learning tool for classification, clustering and dimensionality reduction. It integrates 12 q-kernel functions and 15 conditional negative definite kernel functions and includes the q-kernel and conditional negative definite kernel version of density-based spatial clustering of applications with noise, spectral clustering, generalized discriminant analysis, principal component analysis, multidimensional scaling, locally linear embedding, sammon's mapping and t-Distributed stochastic neighbor embedding.
The approach is based on the closed testing procedure to control familywise error rate in a strong sense. The local tests implemented are Wald-type and rank-score. The method is described in De Santis, et al., (2025), <doi:10.48550/arXiv.2511.07999>.
Extensions of ggplot2 Q-Q plot functionalities.
This package provides a sigmoidal quantile function estimator based on a newly defined generalized expectile function. The generalized sigmoidal quantile function can estimate quantiles beyond the range of the data, which is important for certain applications given smaller sample sizes. The package is based on the method introduced in Hutson (2024) <doi:10.1080/03610918.2022.2032161>.
Given a dataset, the user is invited to utilize the Empirical Cumulative Distribution Function (ECDF) to guess interactively the mean and the mean deviation. Thereafter, using the quadratic curve the user can guess the Root Mean Squared Deviation (RMSD) and visualize the standard deviation (SD). For details, see Sarkar and Rashid (2019)<doi:10.3126/njs.v3i0.25574>, Have You Seen the Standard Deviaton?, Nepalese Journal of Statistics, Vol. 3, 1-10.
Shewhart quality control charts for continuous, attribute and count data. Cusum and EWMA charts. Operating characteristic curves. Process capability analysis. Pareto chart and cause-and-effect chart. Multivariate control charts.
Conduct multiple quantitative trait loci (QTL) and QTL-by-environment interaction (QEI) mapping via ordinary or compressed variance component mixed models with random- or fixed QTL/QEI effects. First, each position on the genome is detected in order to obtain a negative logarithm P-value curve against genome position. Then, all the peaks on each effect (additive or dominant) curve or on each locus curve are viewed as potential main-effect QTLs and QEIs, all their effects are included in a multi-locus model, their effects are estimated by both least angle regression and empirical Bayes (or adaptive lasso) in backcross and F2 populations, and true QTLs and QEIs are identified by likelihood radio test. See Zhou et al. (2022) <doi:10.1093/bib/bbab596> and Wen et al. (2018) <doi:10.1093/bib/bby058>.
The queueing model of visual search models the accuracy and response time data in a visual search experiment using queueing models with finite customer population and stopping criteria of completing the service for finite number of customers. It implements the conceptualization of a hybrid model proposed by Moore and Wolfe (2001), in which visual stimuli enter the processing one after the other and then are identified in parallel. This package provides functions that simulate the specified queueing process and calculate the Wasserstein distance between the empirical response times and the model prediction.
Create static QR codes in R. The content of the QR code is exactly what the user defines. We don't add a redirect URL, making it impossible for us to track the usage of the QR code. This allows to generate fast, free to use and privacy friendly QR codes.
The quantity-intensity (Q/I) relationships, first introduced by Beckett (1964), can be employed to assess the K supplying capacity of different soils based on solid-solution exchange equilibria. Such relationships describe the changes in K+ concentration in the soil solution (or the intensity factor) in relation to the corresponding changes in K+ at exchange sites of the soil (or the capacity or quantity factor). Activity ratio of K to Ca or Ca+Mg is generally used as the variable denoting the intensity, whereas, change in exchangeable K is used to denote the quantity factor.
This package implements the Quantification Evidence Standard algorithm for computing Bayesian evidence sufficiency from binary evidence matrices. It provides posterior estimates, credible intervals, percentiles, and optional visual summaries. The method is universal, reproducible, and independent of any specific clinical or rule based framework. For details see The Quantitative Omics Epidemiology Group et al. (2025) <doi:10.64898/2025.12.02.25341503>.
Fuel economy, size, performance, and price data for cars in Qatar in 2025. Mirrors many of the columns in mtcars, but uses (1) non-US-centric makes and models, (2) 2025 prices, and (3) metric measurements, making it more appropriate for use as an example dataset outside the United States.
This package provides statistical components, tables, and graphs that are useful in Quarto and RMarkdown reports and that produce Quarto elements for special formatting such as tabs and marginal notes and graphs. Some of the functions produce entire report sections with tabs, e.g., the missing data report created by missChk(). Functions for inserting variables and tables inside graphviz and mermaid diagrams are included, and so are special clinical trial graphics for adverse event reporting.
This package provides comprehensive methods for testing, estimating, and conducting uniform inference on quantile treatment effects (QTEs) in sharp regression discontinuity (RD) designs, incorporating covariates and implementing robust bias correction methods of Qu, Yoon, Perron (2024) <doi:10.1162/rest_a_01168>.
This package provides functions to convert data structures among the qtl2', qtl', and DOQTL packages for mapping quantitative trait loci (QTL).
Textual statistics functions formerly in the quanteda package. Textual statistics for characterizing and comparing textual data. Includes functions for measuring term and document frequency, the co-occurrence of words, similarity and distance between features and documents, feature entropy, keyword occurrence, readability, and lexical diversity. These functions extend the quanteda package and are specially designed for sparse textual data.
This package provides functions for estimating the potential dispersal of tree species using regeneration densities and dispersal distances to nearest seed trees. A quantile regression is implemented to determine the dispersal potential. Spatial prediction can be used to identify natural regeneration potential for forest restoration as described in Axer et al (2021) <doi:10.1016/j.foreco.2020.118802>.
Manages, builds and computes statistics and datasets for the construction of quarterly (sub-annual) life tables by exploiting micro-data from either a general or an insured population. References: Pavà a and Lledó (2022) <doi:10.1111/rssa.12769>. Pavà a and Lledó (2023) <doi:10.1017/asb.2023.16>. Pavà a and Lledó (2025) <doi:10.1371/journal.pone.0315937>. Acknowledgements: The authors wish to thank Conselleria de Educación, Universidades y Empleo, Generalitat Valenciana (grants AICO/2021/257; CIAICO/2024/031), Ministerio de Ciencia e Innovación (grant PID2021-128228NB-I00) and Fundación Mapfre (grant Modelización espacial e intra-anual de la mortalidad en España. Una herramienta automática para el calculo de productos de vida') for supporting this research.
Primarily, the qcv package computes key indices related to the Quantifying Construct Validity procedure (QCV; Westen & Rosenthal, 2003 <doi:10.1037/0022-3514.84.3.608>; see also Furr & Heuckeroth, in press). The qcv() function is the heart of the qcv package, but additional functions in the package provide useful ancillary information related to the QCV procedure.
This package provides functions and tools for creating, visualizing, and investigating properties of continuous-time quantum walks, including efficient calculation of matrices such as the mixing matrix, average mixing matrix, and spectral decomposition of the Hamiltonian. E. Farhi (1997): <arXiv:quant-ph/9706062v2>; C. Godsil (2011) <arXiv:1103.2578v3>.
In the spirit of Anscombe's quartet, this package includes datasets that demonstrate the importance of visualizing your data, the importance of not relying on statistical summary measures alone, and why additional assumptions about the data generating mechanism are needed when estimating causal effects. The package includes "Anscombe's Quartet" (Anscombe 1973) <doi:10.1080/00031305.1973.10478966>, D'Agostino McGowan & Barrett (2023) "Causal Quartet" <doi:10.48550/arXiv.2304.02683>, "Datasaurus Dozen" (Matejka & Fitzmaurice 2017), "Interaction Triptych" (Rohrer & Arslan 2021) <doi:10.1177/25152459211007368>, "Rashomon Quartet" (Biecek et al. 2023) <doi:10.48550/arXiv.2302.13356>, and Gelman "Variation and Heterogeneity Causal Quartets" (Gelman et al. 2023) <doi:10.48550/arXiv.2302.12878>.