Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Affymetrix Affymetrix HT_HG-U133_Plus_PM Array annotation data (chip hthgu133pluspm) assembled using data from public repositories.
An interactive tool to visualize long vectors of integer data by means of Hilbert curves.
This package provides a set of functions useful in the analysis of 3D genomic interactions. It includes the import of standard HiC data formats into R and HiC normalisation procedures. The main objective of this package is to improve the visualization and quantification of the analysis of HiC contacts through aggregation. The package allows to import 1D genomics data, such as peaks from ATACSeq, ChIPSeq, to create potential couples between features of interest under user-defined parameters such as distance between pairs of features of interest. It allows then the extraction of contact values from the HiC data for these couples and to perform Aggregated Peak Analysis (APA) for visualization, but also to compare normalized contact values between conditions. Overall the package allows to integrate 1D genomics data with 3D genomics data, providing an easy access to HiC contact values.
This package provides a package containing an environment representing the HG_U95C.CDF file.
Annotation data file for hgu2beta7 assembled using data from public data repositories.
The HiCPotts package provides a comprehensive Bayesian framework for analyzing Hi-C interaction data, integrating both spatial and genomic biases within a probabilistic modeling framework. At its core, HiCPotts leverages the Potts model (Wu, 1982)—a well-established graphical model—to capture and quantify spatial dependencies across interaction loci arranged on a genomic lattice. By treating each interaction as a spatially correlated random variable, the Potts model enables robust segmentation of the genomic landscape into meaningful components, such as noise, true signals, and false signals. To model the influence of various genomic biases, HiCPotts employs a regression-based approach incorporating multiple covariates: Genomic distance (D): The distance between interacting loci, recognized as a fundamental driver of contact frequency. GC-content (GC): The local GC composition around the interacting loci, which can influence chromatin structure and interaction patterns. Transposable elements (TEs): The presence and abundance of repetitive elements that may shape contact probability through chromatin organization. Accessibility score (Acc): A measure of chromatin openness, informing how accessible certain genomic regions are to interaction. By embedding these covariates into a hierarchical mixture model, HiCPotts characterizes each interaction’s probability of belonging to one of several latent components. The model parameters, including regression coefficients, zero-inflation parameters (for ZIP/ZINB distributions), and dispersion terms (for NB/ZINB distributions), are inferred via a MCMC sampler. This algorithm draws samples from the joint posterior distribution, allowing for flexible posterior inference on model parameters and hidden states. From these posterior samples, HiCPotts computes posterior means of regression parameters and other quantities of interest. These posterior estimates are then used to calculate the posterior probabilities that assign each interaction to a specific component. The resulting classification sheds light on the underlying structure: distinguishing genuine high-confidence interactions (signal) from background noise and potential false signals, while simultaneously quantifying the impact of genomic biases on observed interaction frequencies. In summary, HiCPotts seamlessly integrates spatial modeling, bias correction, and probabilistic classification into a unified Bayesian inference framework. It provides rich posterior summaries and interpretable, model-based assignments of interaction states, enabling researchers to better understand the interplay between genomic organization, biases, and spatial correlation in Hi-C data.
Package with metadata for genotyping Illumina 650k arrays using the crlmm package.
Imputes HLA classical alleles using GWAS SNP data, and it relies on a training set of HLA and SNP genotypes. HIBAG can be used by researchers with published parameter estimates instead of requiring access to large training sample datasets. It combines the concepts of attribute bagging, an ensemble classifier method, with haplotype inference for SNPs and HLA types. Attribute bagging is a technique which improves the accuracy and stability of classifier ensembles using bootstrap aggregating and random variable selection.
Testing individual SNPs, as well as arbitrarily large groups of SNPs in GWA studies, using a joint model of all SNPs. The method controls the FWER, and provides an automatic, data-driven refinement of the SNP clusters to smaller groups or single markers.
Annotation data file for humanCHRLOC assembled using data from public data repositories.
hoodscanR is an user-friendly R package providing functions to assist cellular neighborhood analysis of any spatial transcriptomics data with single-cell resolution. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. The package can result in cell-level neighborhood annotation output, along with funtions to perform neighborhood colocalization analysis and neighborhood-based cell clustering.
Agilent Human 1A (V2) annotation data (chip hgug4110b) assembled using data from public repositories.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was HT\_MG-430A\_probe\_tab.
This package provides a package containing an environment representing the Hu35KsubD.CDF file.
This package provides a package containing an environment representing the HG-U133_Plus_2.cdf file.
This package provides a package containing an environment representing the Hu6800.CDF file.
This package contains the data used in the vignettes and examples of the h5vc package.
Affymetrix Affymetrix HG_U95E Array annotation data (chip hgu95e) assembled using data from public repositories.
HMP16SData is a Bioconductor ExperimentData package of the Human Microbiome Project (HMP) 16S rRNA sequencing data for variable regions 1–3 and 3–5. Raw data files are provided in the package as downloaded from the HMP Data Analysis and Coordination Center. Processed data is provided as SummarizedExperiment class objects via ExperimentHub.
This package provides a package containing an environment representing the HG-U133B.cdf file.
Affymetrix hugene11 annotation data (chip hugene11stprobeset) assembled using data from public repositories.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was HG\_U95A\_probe\_tab.
This package provides a package containing an environment representing the HT_MG-430B.cdf file.
Affymetrix Affymetrix HT_MG-430B Array annotation data (chip htmg430b) assembled using data from public repositories.