Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimators for two functionals used to detect Gamma, Pareto or Lognormal distributions, as well as distributions exhibiting similar tail behavior, as introduced by Iwashita and Klar (2023) <doi:10.1111/stan.12316> and Klar (2024) <doi:10.1080/00031305.2024.2413081>. One of these functionals, g, originally proposed by Asmussen and Lehtomaa (2017) <doi:10.3390/risks5010010>, distinguishes between log-convex and log-concave tail behavior. Furthermore the characterization of the lognormal distribution is based on the work of Mosimann (1970) <doi:10.2307/2284599>. The package also includes methods for visualizing these estimators and their associated confidence intervals across various threshold values.
Collection of shiny widgets to support teal applications. Enables the manipulation of application layout and plot or table settings.
This package implements a probabilistic ensemble time-series forecaster that combines an auto-encoder with a neural decision forest whose split variables are learned through a differentiable feature-mask layer. Functions are written with torch tensors and provide CRPS (Continuous Ranked Probability Scores) training plus mixture-distribution post-processing.
Generalized estimating equations (GEE) are a popular choice for analyzing longitudinal binary outcomes. This package provides an interface for fitting GEE, currently for logistic regression, within the tern <https://cran.r-project.org/package=tern> framework (Zhu, Sabanés Bové et al., 2023) and tabulate results easily using rtables <https://cran.r-project.org/package=rtables> (Becker, Waddell et al., 2023). It builds on geepack <doi:10.18637/jss.v015.i02> (Højsgaard, Halekoh and Yan, 2006) for the actual GEE model fitting.
This package provides a tbl_ts class (the tsibble') for temporal data in an data- and model-oriented format. The tsibble provides tools to easily manipulate and analyse temporal data, such as filling in time gaps and aggregating over calendar periods.
This package provides a comprehensive toolset for any useR conducting topological data analysis, specifically via the calculation of persistent homology in a Vietoris-Rips complex. The tools this package currently provides can be conveniently split into three main sections: (1) calculating persistent homology; (2) conducting statistical inference on persistent homology calculations; (3) visualizing persistent homology and statistical inference. The published form of TDAstats can be found in Wadhwa et al. (2018) <doi:10.21105/joss.00860>. For a general background on computing persistent homology for topological data analysis, see Otter et al. (2017) <doi:10.1140/epjds/s13688-017-0109-5>. To learn more about how the permutation test is used for nonparametric statistical inference in topological data analysis, read Robinson & Turner (2017) <doi:10.1007/s41468-017-0008-7>. To learn more about how TDAstats calculates persistent homology, you can visit the GitHub repository for Ripser, the software that works behind the scenes at <https://github.com/Ripser/ripser>. This package has been published as Wadhwa et al. (2018) <doi:10.21105/joss.00860>.
Uniform random samples from simple manifolds, sometimes with noise, are commonly used to test topological data analytic (TDA) tools. This package includes samplers powered by two techniques: analytic volume-preserving parameterizations, as employed by Arvo (1995) <doi:10.1145/218380.218500>, and rejection sampling, as employed by Diaconis, Holmes, and Shahshahani (2013) <doi:10.1214/12-IMSCOLL1006>.
Time-Temperature Superposition analysis is often applied to frequency modulated data obtained by Dynamic Mechanic Analysis (DMA) and Rheometry in the analytical chemistry and physics areas. These techniques provide estimates of material mechanical properties (such as moduli) at different temperatures in a wider range of time. This package provides the Time-Temperature superposition Master Curve at a referred temperature by the three methods: the two wider used methods, Arrhenius based methods and WLF, and the newer methodology based on derivatives procedure. The Master Curve is smoothed by B-splines basis. The package output is composed of plots of experimental data, horizontal and vertical shifts, TTS data, and TTS data fitted using B-splines with bootstrap confidence intervals.
This package performs sparse discriminant analysis on a combination of node and leaf predictors when the predictor variables are structured according to a tree, as described in Fukuyama et al. (2017) <doi:10.1371/journal.pcbi.1005706>.
We provide a tidy grammar of population genetics, facilitating the manipulation and analysis of data on biallelic single nucleotide polymorphisms (SNPs). tidypopgen scales to very large genetic datasets by storing genotypes on disk, and performing operations on them in chunks, without ever loading all data in memory. The full functionalities of the package are described in Carter et al. (2025) <doi:10.1111/2041-210x.70204>.
This package provides a suite of functions for analysing, interpreting, and visualising time-series features calculated from different feature sets from the theft package. Implements statistical learning methodologies described in Henderson, T., Bryant, A., and Fulcher, B. (2023) <doi:10.48550/arXiv.2303.17809>.
Plots ternary diagrams (simplex plots / Gibbs triangles) and Holdridge life zone plots <doi:10.1126/science.105.2727.367> using the standard graphics functions. Allows custom annotation, interpolating, contouring and scaling of plotting region. Includes a Shiny user interface for point-and-click ternary plotting. An alternative to ggtern', which uses the ggplot2 family of plotting functions.
Implementation of the classic Genz algorithm and a novel tile-low-rank algorithm for computing relatively high-dimensional multivariate normal (MVN) and Student-t (MVT) probabilities. References used for this package: Foley, James, Andries van Dam, Steven Feiner, and John Hughes. "Computer Graphics: Principle and Practice". Addison-Wesley Publishing Company. Reading, Massachusetts (1987, ISBN:0-201-84840-6 1); Genz, A., "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 (1992) <doi:10.1080/10618600.1992.10477010>; Cao, J., Genton, M. G., Keyes, D. E., & Turkiyyah, G. M. "Exploiting Low Rank Covariance Structures for Computing High-Dimensional Normal and Student- t Probabilities," Statistics and Computing, 31.1, 1-16 (2021) <doi:10.1007/s11222-020-09978-y>; Cao, J., Genton, M. G., Keyes, D. E., & Turkiyyah, G. M. "tlrmvnmvt: Computing High-Dimensional Multivariate Normal and Student-t Probabilities with Low-Rank Methods in R," Journal of Statistical Software, 101.4, 1-25 (2022) <doi:10.18637/jss.v101.i04>.
This package provides tools for Topological Data Analysis. The package focuses on statistical analysis of persistent homology and density clustering. For that, this package provides an R interface for the efficient algorithms of the C++ libraries GUDHI <https://project.inria.fr/gudhi/software/>, Dionysus <https://www.mrzv.org/software/dionysus/>, and PHAT <https://bitbucket.org/phat-code/phat/>. This package also implements methods from Fasy et al. (2014) <doi:10.1214/14-AOS1252> and Chazal et al. (2015) <doi:10.20382/jocg.v6i2a8> for analyzing the statistical significance of persistent homology features.
Write output (plots and tables) ensuring traceability back to code. Includes a graphics saver with simple automation of stamping with source, destination and creation time. A list of plots can be saved at once. A user-friendly selection of output dimensions for presentations, on-screen inspections, and more available.
Models the direction of the maximum horizontal stress using relative plate motion parameters. Statistical algorithms to evaluate the modeling results compared with the observed data. Provides plots to visualize the results. Methods described in Stephan et al. (2023) <doi:10.1038/s41598-023-42433-2> and Wdowinski (1998) <doi:10.1016/S0079-1946(98)00091-3>.
This package provides a fast, interactive cross-platform, and easy to share WebGL'-based 3D brain viewer that visualizes FreeSurfer and/or AFNI/SUMA surfaces. The viewer widget can be either standalone or embedded into R-shiny applications. The standalone version only require a web browser with WebGL2 support (for example, Chrome', Firefox', Safari'), and can be inserted into any websites. The R-shiny support allows the 3D viewer to be dynamically generated from reactive user inputs. Please check the publication by Wang, Magnotti, Zhang, and Beauchamp (2023, <doi:10.1523/ENEURO.0328-23.2023>) for electrode localization. This viewer has been fully adopted by RAVE <https://openwetware.org/wiki/RAVE>, an interactive toolbox to analyze iEEG data by Magnotti, Wang, and Beauchamp (2020, <doi:10.1016/j.neuroimage.2020.117341>). Please check citation("threeBrain") for details.
This comprehensive toolkit for T-distributed regression is designated as "TLIC" (The LIC for T Distribution Regression Analysis) analysis. It is predicated on the assumption that the error term adheres to a T-distribution. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>.
Simulate genotypes for case-parent triads, case-control, and quantitative trait samples with realistic linkage diequilibrium structure and allele frequency distribution. For studies of epistasis one can simulate models that involve specific SNPs at specific sets of loci, which we will refer to as "pathways". TriadSim generates genotype data by resampling triad genotypes from existing data. The details of the method is described in the manuscript under preparation "Simulating Autosomal Genotypes with Realistic Linkage Disequilibrium and a Spiked in Genetic Effect" Shi, M., Umbach, D.M., Wise A.S., Weinberg, C.R.
Introduction of qenv S4 class, that facilitates code execution and reproducibility in teal applications.
This package provides data frames for forest or tree data structures. You can create forest data structures from data frames and process them based on their hierarchies.
This package provides a set of vectorised functions to calculate medical equations used in transplantation, focused mainly on transplantation of abdominal organs. These functions include donor and recipient risk indices as used by NHS Blood & Transplant, OPTN/UNOS and Eurotransplant, tools for quantifying HLA mismatches, functions for calculating estimated glomerular filtration rate (eGFR), a function to calculate the APRI (AST to platelet ratio) score used in initial screening of suitability to receive a transplant from a hepatitis C seropositive donor and some biochemical unit converter functions. All functions are designed to work with either US or international units. References for the equations are provided in the vignettes and function documentation.
Evaluate inline or chunks of R code in template files and replace with their output modifying the resulting template.
Unsupervised text tokenizer focused on computational efficiency. Wraps the YouTokenToMe library <https://github.com/VKCOM/YouTokenToMe> which is an implementation of fast Byte Pair Encoding (BPE) <https://aclanthology.org/P16-1162/>.