Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Clinical coding and diagnosis of patients with kidney using clinical practice guidelines. The guidelines used are the evidence-based KDIGO guidelines, see <https://kdigo.org/guidelines/> for more information. This package covers acute kidney injury (AKI), anemia, and chronic kidney disease (CKD).
Saturation of ionic substances in urine is calculated based on sodium, potassium, calcium, magnesium, ammonia, chloride, phosphate, sulfate, oxalate, citrate, ph, and urate. This program is intended for research use, only. The code within is translated from EQUIL2 Visual Basic code based on Werness, et al (1985) "EQUIL2: a BASIC computer program for the calculation of urinary saturation" <doi:10.1016/s0022-5347(17)47703-2> to R. The Visual Basic code was kindly provided by Dr. John Lieske of the Mayo Clinic.
This package provides functions to quantify animal dominance hierarchies. The major focus is on Elo rating and its ability to deal with temporal dynamics in dominance interaction sequences. For static data, David's score and de Vries I&SI are also implemented. In addition, the package provides functions to assess transitivity, linearity and stability of dominance networks. See Neumann et al (2011) <doi:10.1016/j.anbehav.2011.07.016> for an introduction.
This package provides tools for automatic model selection and diagnostics for Climate and Environmental data. In particular the envcpt() function does automatic model selection between a variety of trend, changepoint and autocorrelation models. The envcpt() function should be your first port of call.
Implementation of the scaling functions presented in "General statistical scaling laws for stability in ecological systems" by Clark et al in Ecology Letters <DOI:10.1111/ele.13760>. Includes functions for extrapolating variability, resistance, and resilience across spatial and ecological scales, as well as a basic simulation function for producing time series, and a regression routine for generating unbiased parameter estimates. See the main text of the paper for more details.
If translate English or Chinese sentence, there is a faster way for R user. You can pass in an English or Chinese sentence, ecce package support both English and Chinese translation. It also support browse translation results in website. In addition, also support obtain the pinyin of the Chinese character, you can more easily understand the pronunciation of the Chinese character.
Constructing an epistemic model such that, for every player i and for every choice c(i) which is optimal, there is one type that expresses common belief in rationality.
This package provides functions for examining measurement invariance via equivalence testing are included in this package. The traditionally used RMSEA (Root Mean Square Error of Approximation) cutoff values are adjusted based on simulation results. In addition, a projection-based method is implemented to test the equality of latent factor means across groups without assuming the equality of intercepts. For more information, see Yuan, K. H., & Chan, W. (2016) <doi:10.1037/met0000080>, Deng, L., & Yuan, K. H. (2016) <doi:10.1007/s11336-015-9491-8>, and Jiang, G., Mai, Y., & Yuan, K. H. (2017) <doi:10.3389/fpsyg.2017.01823>.
Allows for forward-in-time simulation of epistatic networks with associated phenotypic output.
Exploratory and descriptive analysis of event based data. Provides methods for describing and selecting process data, and for preparing event log data for process mining. Builds on the S3-class for event logs implemented in the package bupaR'.
This package provides tools to analyze the embryo growth and the sexualisation thermal reaction norms. See <doi:10.7717/peerj.8451> for tsd functions; see <doi:10.1016/j.jtherbio.2014.08.005> for thermal reaction norm of embryo growth.
This package implements the Exploratory Graph Analysis (EGA) framework for dimensionality and psychometric assessment. EGA estimates the number of dimensions in psychological data using network estimation methods and community detection algorithms. A bootstrap method is provided to assess the stability of dimensions and items. Fit is evaluated using the Entropy Fit family of indices. Unique Variable Analysis evaluates the extent to which items are locally dependent (or redundant). Network loadings provide similar information to factor loadings and can be used to compute network scores. A bootstrap and permutation approach are available to assess configural and metric invariance. Hierarchical structures can be detected using Hierarchical EGA. Time series and intensive longitudinal data can be analyzed using Dynamic EGA, supporting individual, group, and population level assessments.
This package provides a unified interface for connecting to databases ('SQLite', MySQL', PostgreSQL'). Just provide the database name and the package will ask you questions to help you configure the connection and setup your credentials. Once database configuration and connection has been set up once, you won't have to do it ever again.
Environmental seismology is a scientific field that studies the seismic signals, emitted by Earth surface processes. This package provides all relevant functions to read/write seismic data files, prepare, analyse and visualise seismic data, and generate reports of the processing history.
Application of empirical mode decomposition based artificial neural network model for nonlinear and non stationary univariate time series forecasting. For method details see (i) Choudhury (2019) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=55&issue=1&article=013>; (ii) Das (2020) <https://www.indianjournals.com/ijor.aspx?target=ijor:ijee3&volume=56&issue=2&article=002>.
The main function, ProtectTable(), performs table suppression according to a frequency rule with a data set as the only required input. Within this function, protectTable(), protect_linked_tables() or runArgusBatchFile() in package sdcTable is called. Lists of level-hierarchy (parameter dimList') and other required input to these functions are created automatically. The suppression method Gauss (default) is implemented independently of sdcTable'. The function, PTgui(), starts a graphical user interface based on the shiny package.
Package implements entropy balancing, a data preprocessing procedure described in Hainmueller (2008, <doi:10.1093/pan/mpr025>) that allows users to reweight a dataset such that the covariate distributions in the reweighted data satisfy a set of user specified moment conditions. This can be useful to create balanced samples in observational studies with a binary treatment where the control group data can be reweighted to match the covariate moments in the treatment group. Entropy balancing can also be used to reweight a survey sample to known characteristics from a target population.
Fits Leroux model in spectral domain to estimate causal spatial effect as detailed in Guan, Y; Page, G.L.; Reich, B.J.; Ventrucci, M.; Yang, S; (2020) <arXiv:2012.11767>. Both the parametric and semi-parametric models are available. The semi-parametric model relies on INLA'. The INLA package can be obtained from <https://www.r-inla.org/>.
This package provides methods for analyzing R by C ecological contingency tables using the extreme case analysis, ecological regression, and Multinomial-Dirichlet ecological inference models. Also provides tools for manipulating higher-dimension data objects.
This package provides a comprehensive collection of datasets related to education, covering topics such as student performance, learning methods, test scores, absenteeism, and other educational metrics. This package serves as a resource for educational researchers, data analysts, and statisticians to explore and analyze data in the field of education.
Event dataset repository including both real-life and artificial event logs. They can be used in combination with functionalities provided by the bupaR packages. Janssenswillen et al. (2020) <http://ceur-ws.org/Vol-2703/paperTD7.pdf>.
Computation of the EQL for a given family of variance functions, Saddlepoint-approximations and related auxiliary functions (e.g. Hermite polynomials).
Create encrypted html files that are fully self contained and do not require any additional software. Using the package you can encrypt arbitrary html files and also directly create encrypted rmarkdown html reports.
Package implements the EDNE-test for equivalence according to Hoffelder et al. (2015) <DOI:10.1080/10543406.2014.920344>. "EDNE" abbreviates "Euclidean Distance between the Non-standardized Expected values". The EDNE-test for equivalence is a multivariate two-sample equivalence test. Distance measure of the test is the Euclidean distance. The test is an asymptotically valid test for the family of distributions fulfilling the assumptions of the multivariate central limit theorem (see Hoffelder et al.,2015). The function EDNE.EQ() implements the EDNE-test for equivalence according to Hoffelder et al. (2015). The function EDNE.EQ.dissolution.profiles() implements a variant of the EDNE-test for equivalence analyses of dissolution profiles (see Suarez-Sharp et al.,2020 <DOI:10.1208/s12248-020-00458-9>). EDNE.EQ.dissolution.profiles() checks whether the quadratic mean of the differences of the expected values of both dissolution profile populations is statistically significantly smaller than 10 [\% of label claim]. The current regulatory standard approach for equivalence analyses of dissolution profiles is the similarity factor f2. The statistical hypotheses underlying EDNE.EQ.dissolution.profiles() coincide with the hypotheses for f2 (see Hoffelder et al.,2015, Suarez-Sharp et al., 2020).