Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Alpha and beta diversity for taxonomic (TD), functional (FD), and phylogenetic (PD) dimensions based on rasters. Spatial and temporal beta diversity can be partitioned into replacement and richness difference components. It also calculates standardized effect size for FD and PD alpha diversity and the average individual traits across multilayer rasters. The layers of the raster represent species, while the cells represent communities. Methods details can be found at Cardoso et al. 2022 <https://CRAN.R-project.org/package=BAT> and Heming et al. 2023 <https://CRAN.R-project.org/package=SESraster>.
Model-based methods for the detection of disease clusters using GLMs, GLMMs and zero-inflated models. These methods are described in V. Gómez-Rubio et al. (2019) <doi:10.18637/jss.v090.i14> and V. Gómez-Rubio et al. (2018) <doi:10.1007/978-3-030-01584-8_1>.
DataSHIELD is an infrastructure and series of R packages that enables the remote and non-disclosive analysis of sensitive research data. This package defines the API that is to be implemented by DataSHIELD compliant data repositories.
This package provides a set of control charts for batch processes based on the VAR model. The package contains the implementation of T2.var and W.var control charts based on VAR model coefficients using the couple vectors theory. In each time-instant the VAR coefficients are estimated from a historical in-control dataset and a decision rule is made for online classifying of a new batch data. Those charts allow efficient online monitoring since the very first time-instant. The offline version is available too. In order to evaluate the chart's performance, this package contains functions to generate batch data for offline and online monitoring.See in Danilo Marcondes Filho and Marcio Valk (2020) <doi:10.1016/j.ejor.2019.12.038>.
Build a Dockerfile straight from your R session. dockerfiler allows you to create step by step a Dockerfile, and provide convenient tools to wrap R code inside this Dockerfile.
This package provides tools for detecting XOR-like patterns in variable pairs in two-class data sets. Includes visualizations for pattern exploration and reporting capabilities with both text and HTML output formats.
This package provides an extensive and curated collection of datasets related to the digestive system, stomach, intestines, liver, pancreas, and associated diseases. This package includes clinical trials, observational studies, experimental datasets, cohort data, and case series involving gastrointestinal disorders such as gastritis, ulcers, pancreatitis, liver cirrhosis, colon cancer, colorectal conditions, Helicobacter pylori infection, irritable bowel syndrome, intestinal infections, and post-surgical outcomes. The datasets support educational, clinical, and research applications in gastroenterology, public health, epidemiology, and biomedical sciences. Designed for researchers, clinicians, data scientists, students, and educators interested in digestive diseases, the package facilitates reproducible analysis, modeling, and hypothesis testing using real-world and historical data.
Builds both ROC (Receiver Operating Characteristic) and DET (Detection Error Tradeoff) curves from a set of predictors, which are the results of a binary classification system. The curves give a general vision of the performance of the classifier, and are useful for comparing performance of different systems.
This package provides a concise check of the format of one or multiple input arguments (data type, length or value) is provided. Since multiple input arguments can be tested simultaneously, a lengthly list of checks at the beginning of your function can be avoided, hereby enhancing the readability and maintainability of your code.
The twoStepsBenchmark() and threeRuleSmooth() functions allow you to disaggregate a low-frequency time series with higher frequency time series, using the French National Accounts methodology. The aggregated sum of the resulting time series is strictly equal to the low-frequency time series within the benchmarking window. Typically, the low-frequency time series is an annual one, unknown for the last year, and the high frequency one is either quarterly or monthly. See "Methodology of quarterly national accounts", Insee Méthodes N°126, by Insee (2012, ISBN:978-2-11-068613-8, <https://www.insee.fr/en/information/2579410>).
Allows the computation of clustering coefficients for directed and weighted networks by using different approaches. It allows to compute clustering coefficients that are not present in igraph package. A description of clustering coefficients can be found in "Directed clustering in weighted networks: a new perspective", Clemente, G.P., Grassi, R. (2017), <doi:10.1016/j.chaos.2017.12.007>.
An implementation of the differentiable lasso (dlasso) and SCAD (dSCAD) using iterative ridge algorithm. This package allows selecting the tuning parameter by AIC, BIC, GIC and GIC.
The DYMO package provides tools for multi-feature time-series forecasting using a Dynamic Mode Decomposition (DMD) model combined with conformal predictive sampling for uncertainty quantification.
This package provides functionality to infer trajectories from single-cell data, represent them into a common format, and adapt them. Other biological information can also be added, such as cellular grouping, RNA velocity and annotation. Saelens et al. (2019) <doi:10.1038/s41587-019-0071-9>.
Track and document dplyr data pipelines. As you filter, mutate, and join your way through a data set, dtrackr seamlessly keeps track of your data flow and makes publication ready documentation of a data pipeline simple.
Diff, patch and merge for data frames. Document changes in data sets and use them to apply patches. Changes to data can be made visible by using render_diff(). The V8 package is used to wrap the daff.js JavaScript library which is included in the package.
This package provides a dimension reduction technique for outlier detection. DOBIN: a Distance based Outlier BasIs using Neighbours, constructs a set of basis vectors for outlier detection. This is not an outlier detection method; rather it is a pre-processing method for outlier detection. It brings outliers to the fore-front using fewer basis vectors (Kandanaarachchi, Hyndman 2020) <doi:10.1080/10618600.2020.1807353>.
Implementation of different algorithms for analyzing randomly truncated data, one-sided and two-sided (i.e. doubly) truncated data. It serves to compute empirical cumulative distributions and also kernel density and hazard functions using different bandwidth selectors. Several real data sets are included.
Finds the k nearest neighbours in a dataset of specified points, adding the option to wrap certain variables on a torus. The user chooses the algorithm to use to find the nearest neighbours. Two such algorithms, provided by the packages RANN <https://cran.r-project.org/package=RANN>, and nabor <https://cran.r-project.org/package=nabor>, are suggested.
This package implements the Oaxaca-Blinder decomposition method and generalizations of it that decompose differences in distributional statistics beyond the mean. The function ob_decompose() decomposes differences in the mean outcome between two groups into one part explained by different covariates (composition effect) and into another part due to differences in the way covariates are linked to the outcome variable (structure effect). The function further divides the two effects into the contribution of each covariate and allows for weighted doubly robust decompositions. For distributional statistics beyond the mean, the function performs the recentered influence function (RIF) decomposition proposed by Firpo, Fortin, and Lemieux (2018). The function dfl_decompose() divides differences in distributional statistics into an composition effect and a structure effect using inverse probability weighting as introduced by DiNardo, Fortin, and Lemieux (1996). The function also allows to sequentially decompose the composition effect into the contribution of single covariates. References: Firpo, Sergio, Nicole M. Fortin, and Thomas Lemieux. (2018) <doi:10.3390/econometrics6020028>. "Decomposing Wage Distributions Using Recentered Influence Function Regressions." Fortin, Nicole M., Thomas Lemieux, and Sergio Firpo. (2011) <doi:10.3386/w16045>. "Decomposition Methods in Economics." DiNardo, John, Nicole M. Fortin, and Thomas Lemieux. (1996) <doi:10.2307/2171954>. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach." Oaxaca, Ronald. (1973) <doi:10.2307/2525981>. "Male-Female Wage Differentials in Urban Labor Markets." Blinder, Alan S. (1973) <doi:10.2307/144855>. "Wage Discrimination: Reduced Form and Structural Estimates.".
Data frame, tibble, or tbl objects are converted to data package objects using specific metadata labels (name, version, title, homepage, description). A data package object ('dpkg') can be written to disk as a parquet file or released to a GitHub repository. Data package objects can be read into R from online repositories and downloaded files are cached locally across R sessions.
Overload utils::'? to build unary and binary operators from existing functions, piping operators of different precedence, and flexible syntaxes.
Measure of agreement delta was originally by Martà n & Femia (2004) <DOI:10.1348/000711004849268>. Since then has been considered as agreement measure for different fields, since their behavior is usually better than the usual kappa index by Cohen (1960) <DOI:10.1177/001316446002000104>. The main issue with delta is that can not be computed by hand contrary to kappa. The current algorithm is based on the Version 5 of the delta windows program that can be found on <https://www.ugr.es/~bioest/software/delta/cmd.php?seccion=downloads>.
Written to help undergraduate as well as graduate students to get started with R for basic econometrics without the need to import specific functions and datasets from many different sources. Primarily, the package is meant to accompany the German textbook Auer, L.v., Hoffmann, S., Kranz, T. (2024, ISBN: 978-3-662-68263-0) from which the exercises cover all the topics from the textbook Auer, L.v. (2023, ISBN: 978-3-658-42699-6).