Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The goal of LRcell is to identify specific sub-cell types that drives the changes observed in a bulk RNA-seq differential gene expression experiment. To achieve this, LRcell utilizes sets of cell marker genes acquired from single-cell RNA-sequencing (scRNA-seq) as indicators for various cell types in the tissue of interest. Next, for each cell type, using its marker genes as indicators, we apply Logistic Regression on the complete set of genes with differential expression p-values to calculate a cell-type significance p-value. Finally, these p-values are compared to predict which one(s) are likely to be responsible for the differential gene expression pattern observed in the bulk RNA-seq experiments. LRcell is inspired by the LRpath[@sartor2009lrpath] algorithm developed by Sartor et al., originally designed for pathway/gene set enrichment analysis. LRcell contains three major components: LRcell analysis, plot generation and marker gene selection. All modules in this package are written in R. This package also provides marker genes in the Prefrontal Cortex (pFC) human brain region, human PBMC and nine mouse brain regions (Frontal Cortex, Cerebellum, Globus Pallidus, Hippocampus, Entopeduncular, Posterior Cortex, Striatum, Substantia Nigra and Thalamus).
LBE is an efficient procedure for estimating the proportion of true null hypotheses, the false discovery rate (and so the q-values) in the framework of estimating procedures based on the marginal distribution of the p-values without assumption for the alternative hypothesis.
This package provides annotation databases that support the package LymphoSeq.
LegATo is a suite of open-source software tools for longitudinal microbiome analysis. It is extendable to several different study forms with optimal ease-of-use for researchers. Microbiome time-series data presents distinct challenges including complex covariate dependencies and variety of longitudinal study designs. This toolkit will allow researchers to determine which microbial taxa are affected over time by perturbations such as onset of disease or lifestyle choices, and to predict the effects of these perturbations over time, including changes in composition or stability of commensal bacteria.
Data from three large lung cancer studies provided as ExpressionSets.
lipidr an easy-to-use R package implementing a complete workflow for downstream analysis of targeted and untargeted lipidomics data. lipidomics results can be imported into lipidr as a numerical matrix or a Skyline export, allowing integration into current analysis frameworks. Data mining of lipidomics datasets is enabled through integration with Metabolomics Workbench API. lipidr allows data inspection, normalization, univariate and multivariate analysis, displaying informative visualizations. lipidr also implements a novel Lipid Set Enrichment Analysis (LSEA), harnessing molecular information such as lipid class, total chain length and unsaturation.
This R package analyzes high-throughput sequencing of T and B cell receptor complementarity determining region 3 (CDR3) sequences generated by Adaptive Biotechnologies ImmunoSEQ assay. Its input comes from tab-separated value (.tsv) files exported from the ImmunoSEQ analyzer.
The tool integrates data from biological networks with transcriptomes, displaying a heatmap with surface curves to evidence the altered regions.
LIONESS, or Linear Interpolation to Obtain Network Estimates for Single Samples, can be used to reconstruct single-sample networks (https://arxiv.org/abs/1505.06440). This code implements the LIONESS equation in the lioness function in R to reconstruct single-sample networks. The default network reconstruction method we use is based on Pearson correlation. However, lionessR can run on any network reconstruction algorithms that returns a complete, weighted adjacency matrix. lionessR works for both unipartite and bipartite networks.
lpNet aims at infering biological networks, in particular signaling and gene networks. For that it takes perturbation data, either steady-state or time-series, as input and generates an LP model which allows the inference of signaling networks. For parameter identification either leave-one-out cross-validation or stratified n-fold cross-validation can be used.
This package provides a package containing the data to run LowMACA package.
Lineagespot is a framework written in R, and aims to identify SARS-CoV-2 related mutations based on a single (or a list) of variant(s) file(s) (i.e., variant calling format). The method can facilitate the detection of SARS-CoV-2 lineages in wastewater samples using next generation sequencing, and attempts to infer the potential distribution of the SARS-CoV-2 lineages.
Illumina Mouse Illumina expression annotation data (chip lumiMouseAll) assembled using data from public repositories.
loci2path performs statistics-rigorous enrichment analysis of eQTLs in genomic regions of interest. Using eQTL collections provided by the Genotype-Tissue Expression (GTEx) project and pathway collections from MSigDB.
Identification of interactions between binary variables using Logic Regression. Can, e.g., be used to find interesting SNP interactions. Contains also a bagging version of logic regression for classification.
LOBSTAHS is a multifunction package for screening, annotation, and putative identification of mass spectral features in large, HPLC-MS lipid datasets. In silico data for a wide range of lipids, oxidized lipids, and oxylipins can be generated from user-supplied structural criteria with a database generation function. LOBSTAHS then applies these databases to assign putative compound identities to features in any high-mass accuracy dataset that has been processed using xcms and CAMERA. Users can then apply a series of orthogonal screening criteria based on adduct ion formation patterns, chromatographic retention time, and other properties, to evaluate and assign confidence scores to this list of preliminary assignments. During the screening routine, LOBSTAHS rejects assignments that do not meet the specified criteria, identifies potential isomers and isobars, and assigns a variety of annotation codes to assist the user in evaluating the accuracy of each assignment.
This package includes mappings information between different types of Illumina IDs of Illumina Rat chips and nuIDs. It also includes mappings of all nuIDs included in Illumina Rat chips to RefSeq IDs with mapping qualities information.
Differential expression analysis is a prevalent method utilised in the examination of diverse biological data. The reproducibility-optimized test statistic (ROTS) modifies a t-statistic based on the data's intrinsic characteristics and ranks features according to their statistical significance for differential expression between two or more groups (f-statistic). Focussing on proteomics and metabolomics, the current ROTS implementation cannot account for technical or biological covariates such as MS batches or gender differences among the samples. Consequently, we developed LimROTS, which employs a reproducibility-optimized test statistic utilising the limma methodology to simulate complex experimental designs. LimROTS is a hybrid method integrating empirical bayes and reproducibility-optimized statistics for robust analysis of proteomics and metabolomics data.
This package provides a Graphical User Interface for differential expression analysis of two-color microarray data using the limma package.
This package provides a package containing metadata for LAPOINTE arrays assembled using data from public repositories.
Here we present Link-HD, an approach to integrate heterogeneous datasets, as a generalization of STATIS-ACT (“Structuration des Tableaux A Trois Indices de la Statistique–Analyse Conjointe de Tableaux”), a family of methods to join and compare information from multiple subspaces. However, STATIS-ACT has some drawbacks since it only allows continuous data and it is unable to establish relationships between samples and features. In order to tackle these constraints, we incorporate multiple distance options and a linear regression based Biplot model in order to stablish relationships between observations and variable and perform variable selection.
Illumina Rat Illumina expression annotation data (chip lumiRatAll) assembled using data from public repositories.
This package contains 30 Affymetrix CEL files for 7 Adenocarcinoma (AC) and 8 Squamous cell carcinoma (SCC) lung cancer samples taken at random from 3 GEO datasets (GSE10245, GSE18842 and GSE2109) and other 15 samples from a dataset produced by the organizers of the IMPROVER Diagnostic Signature Challenge available from GEO (GSE43580).
This package includes mappings information between different types of Illumina IDs of Illumina Mouse chips and nuIDs. It also includes mappings of all nuIDs included in Illumina Mouse chips to RefSeq IDs with mapping qualities information.