Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Symptomatic heterogeneity in complex diseases reveals differences in molecular states that need to be investigated. However, selecting the numerous parameters of an exploratory clustering analysis in RNA profiling studies requires deep understanding of machine learning and extensive computational experimentation. Tools that assist with such decisions without prior field knowledge are nonexistent and further gene association analyses need to be performed independently. We have developed a suite of tools to automate these processes and make robust unsupervised clustering of transcriptomic data more accessible through automated machine learning based functions. The efficiency of each tool was tested with four datasets characterised by different expression signal strengths. Our toolkit’s decisions reflected the real number of stable partitions in datasets where the subgroups are discernible. Even in datasets with less clear biological distinctions, stable subgroups with different expression profiles and clinical associations were found.
An R package for multiple-group comparison to detect tissue/cell-specific marker genes among subtypes. It provides functions to compute OVESEG-test statistics, derive component weights in the mixture null distribution model and estimate p-values from weightedly aggregated permutations. Obtained posterior probabilities of component null hypotheses can also portrait all kinds of upregulation patterns among subtypes.
Support harvesting of diverse bioinformatic ontologies, making particular use of the ontologyIndex package on CRAN. We provide snapshots of key ontologies for terms about cells, cell lines, chemical compounds, and anatomy, to help analyze genome-scale experiments, particularly cell x compound screens. Another purpose is to strengthen development of compelling use cases for richer interfaces to emerging ontologies.
OmicCircos is an R application and package for generating high-quality circular plots for omics data.
`orthogene` is an R package for easy mapping of orthologous genes across hundreds of species. It pulls up-to-date gene ortholog mappings across **700+ organisms**. It also provides various utility functions to aggregate/expand common objects (e.g. data.frames, gene expression matrices, lists) using **1:1**, **many:1**, **1:many** or **many:many** gene mappings, both within- and between-species.
Genome wide annotation for Pig, primarily based on mapping using Entrez Gene identifiers.
Statistical tools for building random mutagenesis libraries for prokaryotes. The package has functions for handling the occupancy distribution for a multinomial and for estimating the number of essential genes in random transposon mutagenesis libraries.
Genome wide annotation for Chicken, primarily based on mapping using Entrez Gene identifiers.
Genome wide annotation for E coli strain Sakai, primarily based on mapping using Entrez Gene identifiers.
The software uses the copy number segments from a text file and identifies all chromosome arms that are globally altered and computes various genome-wide scores. The following HRD scores (characteristic of BRCA-mutated cancers) are included: LST, HR-LOH, nLST and gLOH. the package is tailored for the ThermoFisher Oncoscan assay analyzed with their Chromosome Alteration Suite (ChAS) but can be adapted to any input.
Genome wide annotation for Anopheles, primarily based on mapping using Entrez Gene identifiers.
This package performs outlier detection of sequences in a multiple sequence alignment using bootstrap of predefined distance metrics. Outlier sequences can make downstream analyses unreliable or make the alignments less accurate while they are being constructed. This package implements the OD-seq algorithm proposed by Jehl et al (doi 10.1186/s12859-015-0702-1) for aligned sequences and a variant using string kernels for unaligned sequences.
Open Cancer TherApeutic Discovery (OCTAD) package implies sRGES approach for the drug discovery. The essential idea is to identify drugs that reverse the gene expression signature of a disease by tamping down over-expressed genes and stimulating weakly expressed ones. The following package contains all required precomputed data for whole OCTAD pipeline computation.
An implementation of methods for designing, evaluating, and comparing primer sets for multiplex PCR. Primers are designed by solving a set cover problem such that the number of covered template sequences is maximized with the smallest possible set of primers. To guarantee that high-quality primers are generated, only primers fulfilling constraints on their physicochemical properties are selected. A Shiny app providing a user interface for the functionalities of this package is provided by the openPrimeRui package.
Platform Design Info for Affymetrix CyRGene-1_0-st.
Relative transcript abundance has proven to be a valuable tool for understanding the function of genes in biological systems. For the differential analysis of transcript abundance using RNA sequencing data, the negative binomial model is by far the most frequently adopted. However, common methods that are based on a negative binomial model are not robust to extreme outliers, which we found to be abundant in public datasets. So far, no rigorous and probabilistic methods for detection of outliers have been developed for RNA sequencing data, leaving the identification mostly to visual inspection. Recent advances in Bayesian computation allow large-scale comparison of observed data against its theoretical distribution given in a statistical model. Here we propose ppcseq, a key quality-control tool for identifying transcripts that include outlier data points in differential expression analysis, which do not follow a negative binomial distribution. Applying ppcseq to analyse several publicly available datasets using popular tools, we show that from 3 to 10 percent of differentially abundant transcripts across algorithms and datasets had statistics inflated by the presence of outliers.
Two experimental datasets to illustrate running and analysing phylogenetic profiles with PhyloProfile package.
Platform Design Info for Affymetrix MoGene-1_1-st-v1.
Platform Design Info for Affymetrix MTA-1_0.
Platform Design Info for Affymetrix DroGene-1_0-st.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Porcine\_probe\_tab.
Platform Design Info for The Manufacturer's Name HG_U95Av2.
Platform Design Info for Affymetrix Clariom_S_Mouse_HT.
This package provides sample files and data for the vignettes of pepStat and Pviz as well as peptide collections for HIV and SIV.