Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Structured fusion Lasso penalized estimation of multi-state models with the penalty applied to absolute effects and absolute effect differences (i.e., effects on transition-type specific hazard rates).
This package provides a method for fitting the entire regularization path of the principal components lasso for linear and logistic regression models. The algorithm uses cyclic coordinate descent in a path-wise fashion. See URL below for more information on the algorithm. See Tay, K., Friedman, J. ,Tibshirani, R., (2014) Principal component-guided sparse regression <arXiv:1810.04651>.
Perform inference in the secondary analysis setting with linked data potentially containing mismatch errors. Only the linked data file may be accessible and information about the record linkage process may be limited or unavailable. Implements the General Framework for Regression with Mismatched Data developed by Slawski et al. (2023) <doi:10.48550/arXiv.2306.00909>. The framework uses a mixture model for pairs of linked records whose two components reflect distributions conditional on match status, i.e., correct match or mismatch. Inference is based on composite likelihood and the Expectation-Maximization (EM) algorithm. The package currently supports Cox Proportional Hazards Regression (right-censored data only) and Generalized Linear Regression Models (Gaussian, Gamma, Poisson, and Logistic (binary models only)). Information about the underlying record linkage process can be incorporated into the method if available (e.g., assumed overall mismatch rate, safe matches, predictors of match status, or predicted probabilities of correct matches).
Supports the creation of burndown charts and gantt diagrams.
This package provides a comprehensive suite of tools for analyzing omics data. It includes functionalities for alpha diversity analysis, beta diversity analysis, differential abundance analysis, community assembly analysis, visualization of phylogenetic tree, and functional enrichment analysis. With a progressive approach, the package offers a range of analysis methods to explore and understand the complex communities. It is designed to support researchers and practitioners in conducting in-depth and professional omics data analysis.
This package provides data set and function for exploration of Multiple Indicator Cluster Survey (MICS) 2014 Household questionnaire data for Punjab, Pakistan (<http://www.mics.unicef.org/surveys>).
Model selection for penalized graphical models using the Stability Approach to Regularization Selection ('StARS'), with options for speed-ups including Bounded StARS (B-StARS), batch computing, and other stability metrics (e.g., graphlet stability G-StARS). Christian L. Müller, Richard Bonneau, Zachary Kurtz (2016) <arXiv:1605.07072>.
This toolkit is designed for manipulation and analysis of peptides. It provides functionalities to assist researchers in peptide engineering and proteomics. Users can manipulate peptides by adding amino acids at every position, count occurrences of each amino acid at each position, and transform amino acid counts based on probabilities. The package offers functionalities to select the best versus the worst peptides and analyze these peptides, which includes counting specific residues, reducing peptide sequences, extracting features through One Hot Encoding (OHE), and utilizing Quantitative Structure-Activity Relationship (QSAR) properties (based in the package Peptides by Osorio et al. (2015) <doi:10.32614/RJ-2015-001>). This package is intended for both researchers and bioinformatics enthusiasts working on peptide-based projects, especially for their use with machine learning.
Parallelized version of the "segment" function from Bioconductor package "DNAcopy", utilizing multi-core computation on host CPU.
Simulate the dynamic of lion populations using a specific Individual-Based Model (IBM) compiled in C.
This package implements a novel predictive model, Partially Interpretable Estimators (PIE), which jointly trains an interpretable model and a black-box model to achieve high predictive performance as well as partial model. See the paper, Wang, Yang, Li, and Wang (2021) <doi:10.48550/arXiv.2105.02410>.
This package implements Bayesian phase I repeated measurement design that accounts for multidimensional toxicity endpoints and longitudinal efficacy measure from multiple treatment cycles. The package provides flags to fit a variety of model-based phase I design, including 1 stage models with or without individualized dose modification, 3-stage models with or without individualized dose modification, etc. Functions are provided to recommend dosage selection based on the data collected in the available patient cohorts and to simulate trial characteristics given design parameters. Yin, Jun, et al. (2017) <doi:10.1002/sim.7134>.
This package provides a set of functions for reading and writing PC-Axis files, used by different statistical organizations around the globe for data dissemination.
Bayesian network learning using the PCHC, FEDHC, MMHC and variants of these algorithms. PCHC stands for PC Hill-Climbing, a new hybrid algorithm that uses PC to construct the skeleton of the BN and then applies the Hill-Climbing greedy search. More algorithms and variants have been added, such as MMHC, FEDHC, and the Tabu search variants, PCTABU, MMTABU and FEDTABU. The relevant papers are: a) Tsagris M. (2021). "A new scalable Bayesian network learning algorithm with applications to economics". Computational Economics, 57(1): 341-367. <doi:10.1007/s10614-020-10065-7>. b) Tsagris M. (2022). "The FEDHC Bayesian Network Learning Algorithm". Mathematics 2022, 10(15): 2604. <doi:10.3390/math10152604>.
This package provides a package for selecting the most relevant features (genes) in the high-dimensional binary classification problems. The discriminative features are identified using analyzing the overlap between the expression values across both classes. The package includes functions for measuring the proportional overlapping score for each gene avoiding the outliers effect. The used measure for the overlap is the one defined in the "Proportional Overlapping Score (POS)" technique for feature selection. A gene mask which represents a gene's classification power can also be produced for each gene (feature). The set size of the selected genes might be set by the user. The minimum set of genes that correctly classify the maximum number of the given tissue samples (observations) can be also produced.
This package provides a set of tools to implement the non-parametric bounds and Bayesian methods for assessing post-treatment bias developed in Blackwell, Brown, Hill, Imai, and Yamamoto (2025) <doi:10.1017/pan.2025.3>.
Smoothing splines with penalties on order m derivatives.
Set of tools to automatize extraction of data on pests from EPPO Data Services and EPPO Global Database and to put them into tables with human readable format. Those function use EPPO database API', thus you first need to register on <https://data.eppo.int> (free of charge). Additional helpers allow to download, check and connect to SQLite EPPO database'.
The use of overparameterization is proposed with combinatorial analysis to test a broader spectrum of possible ARIMA models. In the selection of ARIMA models, the most traditional methods such as correlograms or others, do not usually cover many alternatives to define the number of coefficients to be estimated in the model, which represents an estimation method that is not the best. The popstudy package contains several tools for statistical analysis in demography and time series based in Shryock research (Shryock et. al. (1980) <https://books.google.co.cr/books?id=8Oo6AQAAMAAJ>).
Simulate and run the Gaussian puff forward atmospheric model in sensor (specific sensor coordinates) or grid (across the grid of a full oil and gas operations site) modes, following Jia, M., Fish, R., Daniels, W., Sprinkle, B. and Hammerling, D. (2024) <doi:10.26434/chemrxiv-2023-hc95q-v3>. Numerous visualization options, including static and animated, 2D and 3D, and a site map generator based on sensor and source coordinates.
Returns almost all features that has been extracted from Position Specific Scoring Matrix (PSSM) so far, which is a matrix of L rows (L is protein length) and 20 columns produced by PSI-BLAST which is a program to produce PSSM Matrix from multiple sequence alignment of proteins see <https://www.ncbi.nlm.nih.gov/books/NBK2590/> for mor details. some of these features are described in Zahiri, J., et al.(2013) <DOI:10.1016/j.ygeno.2013.05.006>, Saini, H., et al.(2016) <DOI:10.17706/jsw.11.8.756-767>, Ding, S., et al.(2014) <DOI:10.1016/j.biochi.2013.09.013>, Cheng, C.W., et al.(2008) <DOI:10.1186/1471-2105-9-S12-S6>, Juan, E.Y., et al.(2009) <DOI:10.1109/CISIS.2009.194>.
Bayesian supervised predictive classifiers, hypothesis testing, and parametric estimation under Partition Exchangeability are implemented. The two classifiers presented are the marginal classifier (that assumes test data is i.i.d.) next to a more computationally costly but accurate simultaneous classifier (that finds a labelling for the entire test dataset at once based on simultanous use of all the test data to predict each label). We also provide the Maximum Likelihood Estimation (MLE) of the only underlying parameter of the partition exchangeability generative model as well as hypothesis testing statistics for equality of this parameter with a single value, alternative, or multiple samples. We present functions to simulate the sequences from Ewens Sampling Formula as the realisation of the Poisson-Dirichlet distribution and their respective probabilities.
This package implements IV-estimator and Bayesian estimator for linear-in-means Spatial Autoregressive (SAR) model (see LeSage, 1997 <doi:10.1177/016001769702000107>; Lee, 2004 <doi:10.1111/j.1468-0262.2004.00558.x>; Bramoullé et al., 2009 <doi:10.1016/j.jeconom.2008.12.021>), while assuming that only a partial information about the network structure is available. Examples are when the adjacency matrix is not fully observed or when only consistent estimation of the network formation model is available (see Boucher and Houndetoungan, 2025 <doi:10.48550/arXiv.2509.08145>).
We extend two general methods of moment estimators to panel vector autoregression models (PVAR) with p lags of endogenous variables, predetermined and strictly exogenous variables. This general PVAR model contains the first difference GMM estimator by Holtz-Eakin et al. (1988) <doi:10.2307/1913103>, Arellano and Bond (1991) <doi:10.2307/2297968> and the system GMM estimator by Blundell and Bond (1998) <doi:10.1016/S0304-4076(98)00009-8>. We also provide specification tests (Hansen overidentification test, lag selection criterion and stability test of the PVAR polynomial) and classical structural analysis for PVAR models such as orthogonal and generalized impulse response functions, bootstrapped confidence intervals for impulse response analysis and forecast error variance decompositions.