Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Turning point method is a method proposed by Choi (1990) <doi:10.2307/2531453> to estimate 50 percent effective dose (ED50) in the study of drug sensitivity. The method has its own advantages for that it can provide robust ED50 estimation. This package contains the modified function of Choi's turning point method.
An API wrapper for the Monash University Probabilistic Footy Tipping Competition <https://probabilistic-footy.monash.edu/~footy/index.shtml>. Allows users to submit tips directly to the competition from R.
The need for anonymization of individual survey responses often leads to many suppressed grid cells in a regular grid. Here we provide functionality for creating multi-resolution gridded data, respecting the confidentiality rules, such as a minimum number of units and dominance by one or more units for each grid cell. The functions also include the possibility for contextual suppression of data. For more details see Skoien et al. (2025) <doi:10.48550/arXiv.2410.17601>.
Multi-core replication function to make it easier to do fast Monte Carlo simulation. Based on the mcreplicate() function from the rethinking package. The rethinking package requires installing rstan', which is onerous to install, while also not adding capabilities to this function.
It is designed to work with text written in Bahasa Malaysia. We provide functions and data sets that will make working with Bahasa Malaysia text much easier. For word stemming in particular, we will look up the Malay words in a dictionary and then proceed to remove "extra suffix" as explained in Khan, Rehman Ullah, Fitri Suraya Mohamad, Muh Inam UlHaq, Shahren Ahmad Zadi Adruce, Philip Nuli Anding, Sajjad Nawaz Khan, and Abdulrazak Yahya Saleh Al-Hababi (2017) <https://ijrest.net/vol-4-issue-12.html> . This package includes a dictionary of Malay words that may be used to perform word stemming, a dataset of Malay stop words, a dataset of sentiment words and a dataset of normalized words.
Impute the covariance matrix of incomplete data so that factor analysis can be performed. Imputations are made using multiple imputation by Multivariate Imputation with Chained Equations (MICE) and combined with Rubin's rules. Parametric Fieller confidence intervals and nonparametric bootstrap confidence intervals can be obtained for the variance explained by different numbers of principal components. The method is described in Nassiri et al. (2018) <doi:10.3758/s13428-017-1013-4>.
Learning and using the Metropolis algorithm for Bayesian fitting of a generalized linear model. The package vignette includes examples of hand-coding a logistic model using several variants of the Metropolis algorithm. The package also contains R functions for simulating posterior distributions of Bayesian generalized linear model parameters using guided, adaptive, guided-adaptive and random walk Metropolis algorithms. The random walk Metropolis algorithm was originally described in Metropolis et al (1953); <doi:10.1063/1.1699114>.
Multisite causal mediation analysis using the methods proposed by Qin and Hong (2017) <doi:10.3102/1076998617694879>, Qin, Hong, Deutsch, and Bein (2019) <doi:10.1111/rssa.12446>, and Qin, Deutsch, and Hong (2021) <doi:10.1002/pam.22268>. It enables causal mediation analysis in multisite trials, in which individuals are assigned to a treatment or a control group at each site. It allows for estimation and hypothesis testing for not only the population average but also the between-site variance of direct and indirect effects transmitted through one single mediator or two concurrent (conditionally independent) mediators. This strategy conveniently relaxes the assumption of no treatment-by-mediator interaction while greatly simplifying the outcome model specification without invoking strong distributional assumptions. This package also provides a function that can further incorporate a sample weight and a nonresponse weight for multisite causal mediation analysis in the presence of complex sample and survey designs and non-random nonresponse, to enhance both the internal validity and external validity. The package also provides a weighting-based balance checking function for assessing the remaining overt bias.
R Client for the Microsoft Cognitive Services Text Analytics REST API, including Sentiment Analysis, Topic Detection, Language Detection, and Key Phrase Extraction. An account MUST be registered at the Microsoft Cognitive Services website <https://www.microsoft.com/cognitive-services/> in order to obtain a (free) API key. Without an API key, this package will not work properly.
This package provides a series of numerical methods for extracting parameters of distributions for risks based on knowing the expected value and c-statistics (e.g., from a published report on the performance of a risk prediction model). This package implements the methodology described in Sadatsafavi et al (2024) <doi:10.48550/arXiv.2409.09178>. The core of the package is mcmap(), which takes a pair of (mean, c-statistic) and the distribution type requested. This function provides a generic interface to more customized functions (mcmap_beta(), mcmap_logitnorm(), mcmap_probitnorm()) for specific distributions.
Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this package, we present the multivariate MArginal ePIstasis Test ('mvMAPIT') â a multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact â thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search based methods. Our proposed mvMAPIT builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a multivariate linear mixed model and develop a multi-trait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. Crawford et al. (2017) <doi:10.1371/journal.pgen.1006869>. Stamp et al. (2023) <doi:10.1093/g3journal/jkad118>.
Allows management of Meetup groups via the <https:www.meetup.com/meetup_api/>. Provided are a set of functions that enable fetching information of joined meetups, attendance, and members. This package requires the use of an API key.
Multivariable Fractional Polynomial algorithm for model-building. Fractional polynomials are used to represent curvature in regression models. A key reference is Royston and Altman, 1994.
Calculate various indices, like Crude Migration Rate, different Gini indices or the Coefficient of Variation among others, to show the (un)equality of migration.
This package provides a new approach to detect change points based on smoothing and multiple testing, which is for long data sequence modeled as piecewise constant functions plus stationary Gaussian noise, see Dan Cheng and Armin Schwartzman (2015) <arXiv:1504.06384>.
This package contains functions to access movement data stored in movebank.org as well as tools to visualize and statistically analyze animal movement data, among others functions to calculate dynamic Brownian Bridge Movement Models. Move helps addressing movement ecology questions.
This package provides functions to support compatibility between Maelstrom R packages and Opal environment. Opal is the OBiBa core database application for biobanks. It is used to build data repositories that integrates data collected from multiple sources. Opal Maelstrom is a specific implementation of this software. This Opal client is specifically designed to interact with Opal Maelstrom distributions to perform operations on the R server side. The user must have adequate credentials. Please see <https://opaldoc.obiba.org/> for complete documentation.
The rapid screening of effective and optimal therapies from large numbers of candidate combinations, as well as exploring subgroup efficacy, remains challenging, which necessitates innovative, integrated, and efficient trial designs(Yuan, Y., et al. (2016) <doi:10.1002/sim.6971>). MIDAS-2 package enables quick and continuous screening of promising combination strategies and exploration of their subgroup effects within a unified platform design framework. We used a regression model to characterize the efficacy pattern in subgroups. Information borrowing was applied through Bayesian hierarchical model to improve trial efficiency considering the limited sample size in subgroups(Cunanan, K. M., et al. (2019) <doi:10.1177/1740774518812779>). MIDAS-2 provides an adaptive drug screening and subgroup exploring framework to accelerate immunotherapy development in an efficient, accurate, and integrated fashion(Wathen, J. K., & Thall, P. F. (2017) <doi: 10.1177/1740774517692302>).
Statistical Analyses and Pooling after Multiple Imputation. A large variety of repeated statistical analysis can be performed and finally pooled. Statistical analysis that are available are, among others, Levene's test, Odds and Risk Ratios, One sample proportions, difference between proportions and linear and logistic regression models. Functions can also be used in combination with the Pipe operator. More and more statistical analyses and pooling functions will be added over time. Heymans (2007) <doi:10.1186/1471-2288-7-33>. Eekhout (2017) <doi:10.1186/s12874-017-0404-7>. Wiel (2009) <doi:10.1093/biostatistics/kxp011>. Marshall (2009) <doi:10.1186/1471-2288-9-57>. Sidi (2021) <doi:10.1080/00031305.2021.1898468>. Lott (2018) <doi:10.1080/00031305.2018.1473796>. Grund (2021) <doi:10.31234/osf.io/d459g>.
The following methods are implemented to evaluate how sensitive the results of a meta-analysis are to potential bias in meta-analysis and to support Schwarzer et al. (2015) <DOI:10.1007/978-3-319-21416-0>, Chapter 5 Small-Study Effects in Meta-Analysis': - Copas selection model described in Copas & Shi (2001) <DOI:10.1177/096228020101000402>; - limit meta-analysis by Rücker et al. (2011) <DOI:10.1093/biostatistics/kxq046>; - upper bound for outcome reporting bias by Copas & Jackson (2004) <DOI:10.1111/j.0006-341X.2004.00161.x>; - imputation methods for missing binary data by Gamble & Hollis (2005) <DOI:10.1016/j.jclinepi.2004.09.013> and Higgins et al. (2008) <DOI:10.1177/1740774508091600>; - LFK index test and Doi plot by Furuya-Kanamori et al. (2018) <DOI:10.1097/XEB.0000000000000141>.
This package provides functions that (1) fit multivariate discrete distributions, (2) generate random numbers from multivariate discrete distributions, and (3) run regression and penalized regression on the multivariate categorical response data. Implemented models include: multinomial logit model, Dirichlet multinomial model, generalized Dirichlet multinomial model, and negative multinomial model. Making the best of the minorization-maximization (MM) algorithm and Newton-Raphson method, we derive and implement stable and efficient algorithms to find the maximum likelihood estimates. On a multi-core machine, multi-threading is supported.
Visualize confounder control in meta-analysis. metaconfoundr is an approach to evaluating bias in studies used in meta-analyses based on the causal inference framework. Study groups create a causal diagram displaying their assumptions about the scientific question. From this, they develop a list of important confounders'. Then, they evaluate whether studies controlled for these variables well. metaconfoundr is a toolkit to facilitate this process and visualize the results as heat maps, traffic light plots, and more.
This package implements area level of multivariate small area estimation using Hierarchical Bayesian method under Normal and T distribution. The rjags package is employed to obtain parameter estimates. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.
Computes indirect effects, conditional effects, and conditional indirect effects in a structural equation model or path model after model fitting, with no need to define any user parameters or label any paths in the model syntax, using the approach presented in Cheung and Cheung (2024) <doi:10.3758/s13428-023-02224-z>. Can also form bootstrap confidence intervals by doing bootstrapping only once and reusing the bootstrap estimates in all subsequent computations. Supports bootstrap confidence intervals for standardized (partially or completely) indirect effects, conditional effects, and conditional indirect effects as described in Cheung (2009) <doi:10.3758/BRM.41.2.425> and Cheung, Cheung, Lau, Hui, and Vong (2022) <doi:10.1037/hea0001188>. Model fitting can be done by structural equation modeling using lavaan() or regression using lm().