Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to decompose (transformed) spatial connectivity matrices and perform supervised or unsupervised semiparametric spatial filtering in a regression framework. The package supports unsupervised spatial filtering in standard linear as well as some generalized linear regression models.
This package implements the algorithm described in Barron, M., and Li, J. (Not yet published). This algorithm clusters samples from multiple ordered populations, links the clusters across the conditions and identifies marker genes for these changes. The package was designed for scRNA-Seq data but is also applicable to many other data types, just replace cells with samples and genes with variables. The package also contains functions for estimating the parameters for SparseMDC as outlined in the paper. We recommend that users further select their marker genes using the magnitude of the cluster centers.
SKIFTI files contain brain imaging data in coordinates across Tract Based Spatial Statistics (TBSS) skeleton, which represent the brain white matter intensity values. skiftiTools provides a unified environment for reading, writing, visualizing and manipulating SKIFTI-format data. It supports the "subsetting", "concatenating", and using data as data.frame for R statistical functions. The SKIFTI data is structured for convenient access to the data and metadata, and includes support for visualizations. For more information see Merisaari et al. (2024) <doi:10.57736/87d2-0608>.
Utilizes the Reliability-Adjusted Product Indicator (RAPI) method to estimate effects among latent variables, thus allowing for more precise definition and analysis of mediation and moderation models. Our simulation studies reveal that while silp may exhibit instability with smaller sample sizes and lower reliability scores (e.g., N = 100, omega = 0.7), implementing nearest positive definite matrix correction and bootstrap confidence interval estimation can significantly ameliorate this volatility. When these adjustments are applied, silp achieves estimations akin in quality to those derived from LMS. In conclusion, the silp package is a valuable tool for researchers seeking to explore complex relational structures between variables without resorting to commercial software. Cheung et al.(2021)<doi:10.1007/s10869-020-09717-0> Hsiao et al.(2018)<doi:10.1177/0013164416679877>.
User-friendly functions which parse output of command line programs used to query Slurm. Morris A. Jette and Tim Wickberg (2023) <doi:10.1007/978-3-031-43943-8_1> describe Slurm in detail.
This package provides a general framework for performing sparse functional clustering as originally described in Floriello and Vitelli (2017) <doi:10.1016/j.jmva.2016.10.008>, with the possibility of jointly handling data misalignment (see Vitelli, 2019, <doi:10.48550/arXiv.1912.00687>).
This takes spatial single-cell-type RNA-seq data (specifically designed for Slide-seq v2) that calls copy number alterations (CNAs) using pseudo-spatial binning, clusters cellular units (e.g. beads) based on CNA profile, and visualizes spatial CNA patterns. Documentation about SlideCNA is included in the the pre-print by Zhang et al. (2022, <doi:10.1101/2022.11.25.517982>). The package enrichR (>= 3.0), conditionally used to annotate SlideCNA-determined clusters with gene ontology terms, can be installed at <https://github.com/wjawaid/enrichR> or with install_github("wjawaid/enrichR").
Testing of soil for the contents of organic carbon, and available macro- and micro-nutrients is a crucial part of soil fertility assessment. This package computes some routinely tested soil properties viz. organic carbon (C), total nitrogen (N), available N, mineral N, available phosphorus (P), available potassium (K), available iron (Fe), available zinc (Zn), available manganese (Mn), available copper (Cu), and available nickel (Ni) in soil based on laboratory analysis data obtained by most commonly followed protocols. Besides, it can also draw standard curves based on absorption/emission vs. concentration data, and give out unknown concentrations from absorption/emission readings.
This package implements an extension of the Generalized Berk-Jones (GBJ) statistic for survival data, sGBJ. It computes the sGBJ statistic and its p-value for testing the association between a gene set and a time-to-event outcome with possible adjustment on additional covariates. Detailed method is available at Villain L, Ferte T, Thiebaut R and Hejblum BP (2021) <doi:10.1101/2021.09.07.459329>.
Survey to collect data about the social and economic conditions of Indonesian society. This activity aims to include: As a data source for planning and evaluating national, sectoral development programs, and providing indicators for Sustainable Development Goals (TPB), National Medium Term Development Plan (RPJMN), and Nawacita, GDP/GRDP and annual Integrated Institutional Balance Sheet.
This package provides a user-friendly wrapper for web automation, using either chromote or selenium'. Provides a simple and consistent API to make web scraping and testing scripts easy to write and understand. Elements are lazy, and automatically wait for the website to be valid, resulting in reliable and reproducible code, with no visible impact on the experience of the programmer.
Computation of sparse portfolios for financial index tracking, i.e., joint selection of a subset of the assets that compose the index and computation of their relative weights (capital allocation). The level of sparsity of the portfolios, i.e., the number of selected assets, is controlled through a regularization parameter. Different tracking measures are available, namely, the empirical tracking error (ETE), downside risk (DR), Huber empirical tracking error (HETE), and Huber downside risk (HDR). See vignette for a detailed documentation and comparison, with several illustrative examples. The package is based on the paper: K. Benidis, Y. Feng, and D. P. Palomar, "Sparse Portfolios for High-Dimensional Financial Index Tracking," IEEE Trans. on Signal Processing, vol. 66, no. 1, pp. 155-170, Jan. 2018. <doi:10.1109/TSP.2017.2762286>.
In clinical trials, endpoints are sometimes evaluated with uncertainty. Adjudication is commonly adopted to ensure the study integrity. We propose to use multiple imputation (MI) introduced by Robin (1987) <doi:10.1002/9780470316696> to incorporate these uncertainties if reasonable event probabilities were provided. The method has been applied to Cox Proportional Hazard (PH) model, Kaplan-Meier (KM) estimation and Log-rank test in this package. Moreover, weighted estimations discussed in Cook (2004) <doi:10.1016/S0197-2456(00)00053-2> were also implemented with weights calculated from event probabilities. In conclusion, this package can handle time-to-event analysis if events presented with uncertainty by different methods.
This package implements a thresholded version of the Sliced Inverse Regression method (Li, K. C. (1991) <doi:10.2307/2290563>), which allows to do variable selection.
This package performs multivariate nonparametric regression/classification by the method of sieves (using orthogonal basis). The method is suitable for moderate high-dimensional features (dimension < 100). The l1-penalized sieve estimator, a nonparametric generalization of Lasso, is adaptive to the feature dimension with provable theoretical guarantees. We also include a nonparametric stochastic gradient descent estimator, Sieve-SGD, for online or large scale batch problems. Details of the methods can be found in: <arXiv:2206.02994> <arXiv:2104.00846><arXiv:2310.12140>.
Determining potential output and the output gap - two inherently unobservable variables - is a major challenge for macroeconomists. sectorgap features a flexible modeling and estimation framework for a multivariate Bayesian state space model identifying economic output fluctuations consistent with subsectors of the economy. The proposed model is able to capture various correlations between output and a set of aggregate as well as subsector indicators. Estimation of the latent states and parameters is achieved using a simple Gibbs sampling procedure and various plotting options facilitate the assessment of the results. For details on the methodology and an illustrative example, see Streicher (2024) <https://www.research-collection.ethz.ch/handle/20.500.11850/653682>.
This package provides a collection of Radix Tree and Trie algorithms for finding similar sequences and calculating sequence distances (Levenshtein and other distance metrics). This work was inspired by a trie implementation in Python: "Fast and Easy Levenshtein distance using a Trie." Hanov (2011) <https://stevehanov.ca/blog/index.php?id=114>.
Bayesian inference for parametric proportional hazards spatial survival models; flexible spatial survival models. See Benjamin M. Taylor, Barry S. Rowlingson (2017) <doi:10.18637/jss.v077.i04>.
This package produces ANOVA tables in the format used by Judd, McClelland, and Ryan (2017, ISBN: 978-1138819832) in their introductory textbook, Data Analysis. This includes proportional reduction in error and formatting to improve ease the transition between the book and R.
This package provides a classification framework to use expression patterns of pathways as features to identify similarity between biological samples. It provides a new measure for quantifying similarity between expression patterns of pathways.
Access to the datasets and many of the functions used in "Statistics Using R: An Integrative Approach". These datasets include a subset of the National Education Longitudinal Study, the Framingham Heart Study, as well as several simulated datasets used in the examples throughout the textbook. The functions included in the package reproduce some of the functionality of Stata that is not directly available in R'. The package also contains a tutorial on basic data frame management, including how to handle missing data.
This package provides functions to calculate EBLUPs (Empirical Best Linear Unbiased Predictor) estimators and their MSEs (Mean Squared Errors). Estimators are based on an area-level linear mixed model introduced by Rao and Yu (1994) <doi:10.2307/3315407>. The REML (Residual Maximum Likelihood) method is used for fitting the model.
This package provides a pipeline to perform small area estimation and prevalence mapping of binary indicators using health and demographic survey data, described in Fuglstad et al. (2022) <doi:10.48550/arXiv.2110.09576> and Wakefield et al. (2020) <doi:10.1111/insr.12400>.
Interactively play a game of sokoban ,which has nine game levels.Sokoban is a type of transport puzzle, in which the player pushes boxes or crates around in a warehouse, trying to get them to storage locations.