Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of tools for analyzing significance of assets, funds, and trading strategies, based on the Sharpe ratio and overfit of the same. Provides density, distribution, quantile and random generation of the Sharpe ratio distribution based on normal returns, as well as the optimal Sharpe ratio over multiple assets. Computes confidence intervals on the Sharpe and provides a test of equality of Sharpe ratios based on the Delta method. The statistical foundations of the Sharpe can be found in the author's Short Sharpe Course <doi:10.2139/ssrn.3036276>.
This package implements self-organising maps combined with hierarchical cluster analysis (SOM-HCA) for clustering and visualization of high-dimensional data. The package includes functions to estimate the optimal map size based on various quality measures and to generate a model using the selected dimensions. It also performs hierarchical clustering on the map nodes to group similar units. Documentation about the SOM-HCA method is provided in Pastorelli et al. (2024) <doi:10.1002/xrs.3388>.
Efficient Markov chain Monte Carlo (MCMC) algorithms for fully Bayesian estimation of dynamic survival models with shrinkage priors. Details on the algorithms used are provided in Wagner (2011) <doi:10.1007/s11222-009-9164-5>, Bitto and Frühwirth-Schnatter (2019) <doi:10.1016/j.jeconom.2018.11.006> and Cadonna et al. (2020) <doi:10.3390/econometrics8020020>.
Output colors used in literal vectors, palettes and plot objects (ggplot).
This package performs simulation and inference of diffusion processes on circle. Stochastic correlation models based on circular diffusion models are provided. For details see Majumdar, S. and Laha, A.K. (2024) "Diffusion on the circle and a stochastic correlation model" <doi:10.48550/arXiv.2412.06343>.
Fit a spatial-temporal occupancy models using a probit formulation instead of a traditional logit model.
Create Shiny Apps with collapsible vertical panels. This package provides a new visual arrangement for elements on top of Shiny'. Use the expand and collapse capabilities to leverage web applications with many elements to focus the user attention on the panel of interest.
Structural multivariate-univariate linear mixed model solver for estimation of multiple random effects with unknown variance-covariance structures (e.g., heterogeneous and unstructured) and known covariance among levels of random effects (e.g., pedigree and genomic relationship matrices) (Covarrubias-Pazaran, 2016 <doi:10.1371/journal.pone.0156744>; Maier et al., 2015 <doi:10.1016/j.ajhg.2014.12.006>; Jensen et al., 1997). REML estimates can be obtained using the Direct-Inversion Newton-Raphson and Direct-Inversion Average Information algorithms for the problems r x r (r being the number of records) or using the Henderson-based average information algorithm for the problem c x c (c being the number of coefficients to estimate). Spatial models can also be fitted using the two-dimensional spline functionality available.
An object oriented framework to simulate ecological (and other) dynamic systems. It can be used for differential equations, individual-based (or agent-based) and other models as well. It supports structuring of simulation scenarios (to avoid copy and paste) and aims to improve readability and re-usability of code.
An implementation of local and global statistical complexity measures (aka Information Theory Quantifiers, ITQ) for time series analysis based on ordinal statistics (Bandt and Pompe (2002) <DOI:10.1103/PhysRevLett.88.174102>). Several distance measures that operate on ordinal pattern distributions, auxiliary functions for ordinal pattern analysis, and generating functions for stochastic and deterministic-chaotic processes for ITQ testing are provided.
This package provides a set of Rmarkdown themes for creating scientific and professional documents. Simple interface with features to ease navigation across the page and sub-pages.
Uses simulation to create prediction intervals for post-policy outcomes in interrupted time series (ITS) designs, following Miratrix (2020) <arXiv:2002.05746>. This package provides methods for fitting ITS models with lagged outcomes and variables to account for temporal dependencies. It then conducts inference via simulation, simulating a set of plausible counterfactual post-policy series to compare to the observed post-policy series. This package also provides methods to visualize such data, and also to incorporate seasonality models and smoothing and aggregation/summarization. This work partially funded by Arnold Ventures in collaboration with MDRC.
This package provides a simple method to display and characterise the multidimensional ecological niche of a species. The method also estimates the optimums and amplitudes along each niche dimension. Give also an estimation of the degree of niche overlapping between species. See Kleparski and Beaugrand (2022) <doi:10.1002/ece3.8830> for further details.
This package implements statistical methods for detecting evolutionary shifts in both the optimal trait value (mean) and evolutionary diffusion variance. The method uses an L1-penalized optimization framework to identify branches where shifts occur, and the shift magnitudes. It also supports the inclusion of measurement error. For more details, see Zhang, Ho, and Kenney (2023) <doi:10.48550/arXiv.2312.17480>.
Extension to the spatstat package, enabling the user to fit point process models to point pattern data by local composite likelihood ('geographically weighted regression').
This package provides a systematic biology tool was developed to prioritize cancer subtype-specific drugs by integrating genetic perturbation, drug action, biological pathway, and cancer subtype. The capabilities of this tool include inferring patient-specific subpathway activity profiles in the context of gene expression profiles with subtype labels, calculating differentially expressed subpathways based on cultured human cells treated with drugs in the cMap (connectivity map) database, prioritizing cancer subtype specific drugs according to drug-disease reverse association score based on subpathway, and visualization of results (Castelo (2013) <doi:10.1186/1471-2105-14-7>; Han et al (2019) <doi:10.1093/bioinformatics/btz894>; Lamb and Justin (2006) <doi:10.1126/science.1132939>). Please cite using <doi:10.1093/bioinformatics/btab011>.
This package provides a pipeline for estimating the stellar age, mass, and radius given observational effective temperature, [Fe/H], and astroseismic parameters. The results are obtained adopting a maximum likelihood technique over a grid of pre-computed stellar models, as described in Valle et al. (2014) <doi:10.1051/0004-6361/201322210>.
The sparse vector field consensus (SparseVFC) algorithm (Ma et al., 2013 <doi:10.1016/j.patcog.2013.05.017>) for robust vector field learning. Largely translated from the Matlab functions in <https://github.com/jiayi-ma/VFC>.
It computes Relative survival, AER and SMR based on French death rates.
This package provides routines to check identifiability or non-identifiability of linear structural equation models as described in Drton, Foygel, and Sullivant (2011) <doi:10.1214/10-AOS859>, Foygel, Draisma, and Drton (2012) <doi:10.1214/12-AOS1012>, and other works. The routines are based on the graphical representation of structural equation models.
This package provides functions for self-determination motivation theory (SDT) to compute measures of motivation internalization, motivation simplex structure, and of the original and adjusted self-determination or relative autonomy index. SDT was introduced by Deci and Ryan (1985) <doi:10.1007/978-1-4899-2271-7>. See package?SDT for an overview.
This package implements an extension of the Generalized Berk-Jones (GBJ) statistic for survival data, sGBJ. It computes the sGBJ statistic and its p-value for testing the association between a gene set and a time-to-event outcome with possible adjustment on additional covariates. Detailed method is available at Villain L, Ferte T, Thiebaut R and Hejblum BP (2021) <doi:10.1101/2021.09.07.459329>.
Implementation of uniformity tests on the circle and (hyper)sphere. The main function of the package is unif_test(), which conveniently collects more than 35 tests for assessing uniformity on S^p-1 = x in R^p : ||x|| = 1, p >= 2. The test statistics are implemented in the unif_stat() function, which allows computing several statistics for different samples within a single call, thus facilitating Monte Carlo experiments. Furthermore, the unif_stat_MC() function allows parallelizing them in a simple way. The asymptotic null distributions of the statistics are available through the function unif_stat_distr(). The core of sphunif is coded in C++ by relying on the Rcpp package. The package also provides several novel datasets and gives the replicability for the data applications/simulations in Garcà a-Portugués et al. (2021) <doi:10.1007/978-3-030-69944-4_12>, Garcà a-Portugués et al. (2023) <doi:10.3150/21-BEJ1454>, Fernández-de-Marcos and Garcà a-Portugués (2024) <doi:10.1016/j.spl.2024.110218>, and Garcà a-Portugués et al. (2024) <doi:10.48550/arXiv.2108.09874>.
Quasi-Monte-Carlo algorithm for systematic generation of shock scenarios from an arbitrary multivariate elliptical distribution. The algorithm selects a systematic mesh of arbitrary fineness that approximately evenly covers an isoprobability ellipsoid in d dimensions (Flood, Mark D. & Korenko, George G. (2013) <doi:10.1080/14697688.2014.926018>). This package is the R analogy to the Matlab code published by Flood & Korenko in above-mentioned paper.