Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates SEER (Surveillance, Epidemiology and End Results) and A-bomb data binaries from ASCII sources and provides tools for estimating SEER second cancer risks. Methods are described in <doi:10.1038/leu.2015.258>.
Traditional model evaluation metrics fail to capture model performance under less than ideal conditions. This package employs techniques to evaluate models "under-stress". This includes testing models extrapolation ability, or testing accuracy on specific sub-samples of the overall model space. Details describing stress-testing methods in this package are provided in Haycock (2023) <doi:10.26076/2am5-9f67>. The other primary contribution of this package is provided to R users access to the Python library PyCaret <https://pycaret.org/> for quick and easy access to auto-tuned machine learning models.
This package provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.
I provide functions to calculate Gross Primary Productivity, Net Ecosystem Production, and Ecosystem Respiration from single station diurnal Oxygen curves.
Generate power for the Cox proportional hazards model by simulating survival events data with time dependent exposure status for subjects. A dichotomous exposure variable is considered with a single transition from unexposed to exposed status during the subject's time on study.
R implementation of S. Joe and F. Y. Kuo(2008) <DOI:10.1137/070709359>. The implementation is based on the data file new-joe-kuo-6.21201 <http://web.maths.unsw.edu.au/~fkuo/sobol/>.
Fit and selects point pattern models based on minimum contrast, AIC and and goodness of fit.
Documentation and prototypes for the earliest (circa 2010) open-source effort to reverse engineer the sas7bdat file format. The package includes a prototype reader for sas7bdat files. However, newer packages may contain more robust readers for sas7bdat files.
Function for the computation of fractal dimension based on mass of soil particle size distribution by Tyler & Wheatcraft (1992) <doi:10.2136/sssaj1992.03615995005600020005x>. It also provides functions for calculation of mean weight and geometric mean diameter of particle size distribution by Perfect et al. (1992) <doi:10.2136/sssaj1992.03615995005600050012x>.
This package implements the SISAL algorithm by Tikka and Hollmén. It is a sequential backward selection algorithm which uses a linear model in a cross-validation setting. Starting from the full model, one variable at a time is removed based on the regression coefficients. From this set of models, a parsimonious (sparse) model is found by choosing the model with the smallest number of variables among those models where the validation error is smaller than a threshold. Also implements extensions which explore larger parts of the search space and/or use ridge regression instead of ordinary least squares.
Collection of custom input controls and user interface components for Shiny applications. Give your applications a unique and colorful style !
An interactive Shiny application to perform fast parameter inference on dynamical systems (described by ordinary differential equations) using gradient matching. Please see the project page for more details.
The goal of siteymlgen is to make it easy to organise the building of your R Markdown website. The init() function placed within the first code chunk of the index.Rmd file of an R project directory will initiate the generation of an automatically written _site.yml file. siteymlgen recommends a specific naming convention for your R Markdown files. This naming will ensure that your navbar layout is ordered according to a hierarchy.
The Scott-Knott Effect Size Difference (ESD) test is a mean comparison approach that leverages a hierarchical clustering to partition the set of treatment means (e.g., means of variable importance scores, means of model performance) into statistically distinct groups with non-negligible difference [Tantithamthavorn et al., (2018) <doi:10.1109/TSE.2018.2794977>].
This package provides a modular and extendable approach to extract (micro)saccades from gaze samples via an ensemble of methods. Although there is an agreement about a general definition of a saccade, the more specific details are harder to agree upon. Therefore, there are numerous algorithms that extract saccades based on various heuristics, which differ in the assumptions about velocity, acceleration, etc. The package uses three methods (Engbert and Kliegl (2003) <doi:10.1016/S0042-6989(03)00084-1>, Otero-Millan et al. (2014)<doi:10.1167/14.2.18>, and Nyström and Holmqvist (2010) <doi:10.3758/BRM.42.1.188>) to label individual samples and then applies a majority vote approach to identify saccades. The package includes three methods but can be extended via custom functions. It also uses a modular approach to compute velocity and acceleration from noisy samples. Finally, you can obtain methods votes per gaze sample instead of saccades.
This package provides a set of tools for determining the necessary sample size in order to identify the optimal dynamic treatment regime in a sequential, multiple assignment, randomized trial (SMART). Utilizes multiple comparisons with the best methodology to adjust for multiple comparisons. Designed for an arbitrary SMART design. Please see Artman (2018) <doi:10.1093/biostatistics/kxy064> for more details.
Generates Skew Factor Models data and applies Sparse Online Principal Component (SOPC), Incremental Principal Component (IPC), Projected Principal Component (PPC), Perturbation Principal Component (PPC), Stochastic Approximation Principal Component (SAPC), Sparse Principal Component (SPC) and other PC methods to estimate model parameters. It includes capabilities for calculating mean squared error, relative error, and sparsity of the loading matrix.The philosophy of the package is described in Guo G. (2023) <doi:10.1007/s00180-022-01270-z>.
To calculate the standard error of measurement (SEM) to assess the observer variability (inter- and intra-observer variation). The methods used in this package are referenced from Zoran B. PopoviÄ (2017) <doi:10.21037/cdt.2017.03.12>.
This package implements multiple consistent scoring functions (Gneiting T (2011) <doi:10.1198/jasa.2011.r10138>) for assessing point forecasts and point predictions. Detailed documentation of scoring functions properties is included for facilitating interpretation of results.
This package provides a matrix-like class to represent a symmetric matrix partitioned into file-backed blocks.
An implementation of sparse Gaussian Markov random field mixtures presented by Ide et al. (2016) <doi:10.1109/ICDM.2016.0119>. It provides a novel anomaly detection method for multivariate noisy sensor data. It can automatically handle multiple operational modes. And it can also compute variable-wise anomaly scores.
The Hypothesis tests for the means of independent or paired groups. This package investigates the normality assumption automatically. Then, it tests the hypothesis tests for two independent or paired group means by using parametric or non-parametric tests. It uses the Shapiro-Wilk test to test the normality assumption. For independent two groups, If data comes from the normal distribution, the package uses the Z or t-test according to whether variances are known. For paired groups, it uses paired t-test under normal data sets. If data does not come from the normal distribution, the package uses the Wilcoxon test for independent and paired cases.
This package provides a convenient interface to the staticrypt by Robin Moisson <https://github.com/robinmoisson/staticrypt>---'Node.js package for adding a password protection layer to static HTML pages. This package can be integrated into the post-render process of quarto documents to secure them with a password.
The Sparse Marginal Epistasis Test is a computationally efficient genetics method which detects statistical epistasis in complex traits; see Stamp et al. (2025, <doi:10.1101/2025.01.11.632557>) for details.