Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Playfair, Four-Square, Scytale, Columnar Transposition and Autokey methods. Further explanation on methods of classical cryptography can be found at Wikipedia; (<https://en.wikipedia.org/wiki/Classical_cipher>).
Evaluates stimuli using Large Language Models APIs with URL support.
This package provides a common misconception is that the Hochberg procedure comes up with adequate overall type I error control when test statistics are positively correlated. However, unless the test statistics follow some standard distributions, the Hochberg procedure requires a more stringent positive dependence assumption, beyond mere positive correlation, to ensure valid overall type I error control. To fill this gap, we formulate statistical tests grounded in rank correlation coefficients to validate fulfillment of the positive dependence through stochastic ordering (PDS) condition. See Gou, J., Wu, K. and Chen, O. Y. (2024). Rank correlation coefficient based tests on positive dependence through stochastic ordering with application in cancer studies, Technical Report.
Computes p-values using the largest root test using an approximation to the null distribution by Johnstone (2008) <DOI:10.1214/08-AOS605>.
Salmonella enterica is a major cause of bacterial food-borne disease worldwide. Serotype identification is the most commonly used typing method to characterize Salmonella isolates. However, experimental serotyping needs great cost on manpower and resources. Recently, we found that the newly incorporated spacer in the clustered regularly interspaced short palindromic repeat (CRISPR) could serve as an effective marker for typing of Salmonella. It was further revealed by Li et. al (2014) <doi:10.1128/JCM.00696-14> that recognized types based on the combination of two newly incorporated spacer in both CRISPR loci showed high accordance with serotypes. Here, we developed an R package CSESA to predict the serotype based on this finding. Considering itâ s time saving and of high accuracy, we recommend to predict the serotypes of unknown Salmonella isolates using CSESA before doing the traditional serotyping.
This package provides a flexible and robust joint test of the single nucleotide polymorphism (SNP) main effect and genotype-by-treatment interaction effect for continuous and binary endpoints. Two analytic procedures, Cauchy weighted joint test (CWOT) and adaptively weighted joint test (AWOT), are proposed to accurately calculate the joint test p-value. The proposed methods are evaluated through extensive simulations under various scenarios. The results show that the proposed AWOT and CWOT control type I error well and outperform existing methods in detecting the most interesting signal patterns in pharmacogenetics (PGx) association studies. For reference, see Hong Zhang, Devan Mehrotra and Judong Shen (2022) <doi:10.13140/RG.2.2.28323.53280>.
Enables user interactivity with large-language models ('LLM') inside the RStudio integrated development environment (IDE). The user can interact with the model using the shiny app included in this package, or directly in the R console. It comes with back-ends for OpenAI', GitHub Copilot', and LlamaGPT'.
Maps of Comoro Islands. Layers include the country coastline, each island coastline and administrative regions boundaries.
This package provides various tools of for clustering multivariate angular data on the torus. The package provides angular adaptations of usual clustering methods such as the k-means clustering, pairwise angular distances, which can be used as an input for distance-based clustering algorithms, and implements clustering based on the conformal prediction framework. Options for the conformal scores include scores based on a kernel density estimate, multivariate von Mises mixtures, and naive k-means clusters. Moreover, the package provides some basic data handling tools for angular data.
This package contains functions to help in selecting and exploring features ( or variables ) in binary classification problems. Provides functions to compute and display information value and weight of evidence (WoE) of the variables , and to convert numeric variables to categorical variables by binning. Functions are also provided to determine which levels ( or categories ) of a categorical variable can be collapsed (or combined ) based on their response rates. The functions provided only work for binary classification problems.
For those wishing to interact with the Charles Schwab Individual Trader API (<https://developer.schwab.com/products/trader-api--individual>) with R in a simplified manner, this package offers wrapper functions around authentication and the available API calls to streamline the process.
Estimating mutation and selection coefficients on synonymous codon bias usage based on models of ribosome overhead cost (ROC). Multinomial logistic regression and Markov Chain Monte Carlo are used to estimate and predict protein production rates with/without the presence of expressions and measurement errors. Work flows with examples for simulation, estimation and prediction processes are also provided with parallelization speedup. The whole framework is tested with yeast genome and gene expression data of Yassour, et al. (2009) <doi:10.1073/pnas.0812841106>.
Cox model inference for relative hazard and covariate-specific pure risk estimated from stratified and unstratified case-cohort data as described in Etievant, L., Gail, M.H. (Lifetime Data Analysis, 2024) <doi:10.1007/s10985-024-09621-2>.
Computes the Conover-Iman test (1979) for 0th-order stochastic dominance and reports the results among multiple pairwise comparisons after a Kruskal-Wallis omnibus test for i0th-order stochastic dominance among k groups (Kruskal and Wallis, 1952). conover.test makes k(k-1)/2 multiple pairwise comparisons based on Conover-Iman t-test-statistic of the rank differences. The null hypothesis for each pairwise comparison is that the probability of observing a randomly selected value from the first group that is larger than a randomly selected value from the second group equals one half; this null hypothesis corresponds to that of the Wilcoxon-Mann-Whitney rank-sum test. Like the rank-sum test, if the data can be assumed to be continuous, and the distributions are assumed identical except for a difference in location, Conover-Iman test may be understood as a test for median difference and for mean difference. conover.test accounts for tied ranks. The Conover-Iman test is strictly valid if and only if the corresponding Kruskal-Wallis null hypothesis is rejected.
This is an add-on to the cna package <https://CRAN.R-project.org/package=cna> comprising various functions for optimizing consistency and coverage scores of models of configurational comparative methods as Coincidence Analysis (CNA) and Qualitative Comparative Analysis (QCA). The function conCovOpt() calculates con-cov optima, selectMax() selects con-cov maxima among the con-cov optima, DNFbuild() can be used to build models actually reaching those optima, and findOutcomes() identifies those factor values in analyzed data that can be modeled as outcomes. For a theoretical introduction to these functions see Baumgartner and Ambuehl (2021) <doi:10.1177/0049124121995554>.
This package contains functions to estimate the Correlation-Adjusted Regression Survival (CARS) Scores. The method is described in Welchowski, T. and Zuber, V. and Schmid, M., (2018), Correlation-Adjusted Regression Survival Scores for High-Dimensional Variable Selection, <arXiv:1802.08178>.
Identification of cardinal dates (begin, time of maximum, end of mass developments) in ecological time series using fitted Weibull functions.
This package provides a collection of cardiovascular research datasets and analytical tools, including methods for cardiovascular procedural data, such as electrocardiography, echocardiography, and catheterization data. Additional methods exist for analysis of procedural billing codes.
Detection of change-points for variance of heteroscedastic Gaussian variables with piecewise constant variance function. Adelfio, G. (2012), Change-point detection for variance piecewise constant models, Communications in Statistics, Simulation and Computation, 41:4, 437-448, <doi:10.1080/03610918.2011.592248>.
Applies the change-in-effect estimate method to assess confounding effects in medical and epidemiological research (Greenland & Pearce (2016) <doi:10.1146/annurev-publhealth-031914-122559> ). It starts with a crude model including only the outcome and exposure variables. At each of the subsequent steps, one variable which creates the largest change among the remaining variables is selected. This process is repeated until all variables have been entered into the model (Wang Z. Stata Journal 2007; 7, Number 2, pp. 183â 196). Currently, the chest package has functions for linear regression, logistic regression, negative binomial regression, Cox proportional hazards model and conditional logistic regression.
Generate project files and directories following a pre-made template. You can specify variables to customize file names and content, and flexibly adapt the template to your needs. cookiecutter for R implements a subset of the excellent cookiecutter package for the Python programming language (<https://github.com/cookiecutter/>), and aims to be largely compatible with the original cookiecutter template format.
Wraps cytoscape.js as a shiny widget. cytoscape.js <https://js.cytoscape.org/> is a Javascript-based graph theory (network) library for visualization and analysis. This package supports the visualization of networks with custom visual styles and several available layouts. Demo Shiny applications are provided in the package code.
This package provides a matrix of agreement patterns and counts for record pairs is the input for the procedure. An EM algorithm is used to impute plausible values for missing record pairs. A second EM algorithm, incorporating possible correlations between per-field agreement, is used to estimate posterior probabilities that each pair is a true match - i.e. constitutes the same individual.
An implementation of the statistical methods commonly used for advanced composite materials in aerospace applications. This package focuses on calculating basis values (lower tolerance bounds) for material strength properties, as well as performing the associated diagnostic tests. This package provides functions for calculating basis values assuming several different distributions, as well as providing functions for non-parametric methods of computing basis values. Functions are also provided for testing the hypothesis that there is no difference between strength and modulus data from an alternate sample and that from a "qualification" or "baseline" sample. For a discussion of these statistical methods and their use, see the Composite Materials Handbook, Volume 1 (2012, ISBN: 978-0-7680-7811-4). Additional details about this package are available in the paper by Kloppenborg (2020, <doi:10.21105/joss.02265>).