Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Calculates the RMS intrinsic and parameter-effects curvatures of a nonlinear regression model. The curvatures are global measures of assessing whether a model/data set combination is close-to-linear or not. See Bates and Watts (1980) <doi:10.1002/9780470316757> and Ratkowsky and Reddy (2017) <doi:10.1093/aesa/saw098> for details.
This package provides functions read a dataframe containing one or more International Classification of Diseases Tenth Revision codes per subject. They return original data with injury categorizations and severity scores added.
Computation of test statistics of independence between (continuous) innovations of time series. They can be used with stochastic volatility models and Hidden Markov Models (HMM). This improves the results in Duchesne, Ghoudi & Remillard (2012) <doi:10.1002/cjs.11141>.
To integrate multiple GSEA studies, we propose a hybrid strategy, iGSEA-AT, for choosing random effects (RE) versus fixed effect (FE) models, with an attempt to achieve the potential maximum statistical efficiency as well as stability in performance in various practical situations. In addition to iGSEA-AT, this package also provides options to perform integrative GSEA with testing based on a FE model (iGSEA-FE) and testing based on a RE model (iGSEA-RE). The approaches account for different set sizes when testing a database of gene sets. The function is easy to use, and the three approaches can be applied to both binary and continuous phenotypes.
This package provides a set of functions for the modeling of data derived from the Minidisc Infiltrometer device. It calculates cumulative infiltration and square root of time. Also, it calculates the A parameter based on soil physical properties.
Enable user to find the IP addresses which are used as VPN anonymizer, open proxies, web proxies and Tor exits. The package lookup the proxy IP address from IP2Proxy BIN Data file. You may visit <https://lite.ip2location.com> for free database download.
An implementation of randomization-based hypothesis testing for three different estimands in a cluster-randomized encouragement experiment. The three estimands include (1) testing a cluster-level constant proportional treatment effect (Fisher's sharp null hypothesis), (2) pooled effect ratio, and (3) average cluster effect ratio. To test the third estimand, user needs to install Gurobi (>= 9.0.1) optimizer via its R API. Please refer to <https://www.gurobi.com/documentation/9.0/refman/ins_the_r_package.html>.
For environmental chemists, ecologists, researchers and agricultural scientists to understand the dissipation kinetics, calculate the half-life periods and rate constants of compounds, pesticides, contaminants in different matrices.
Regression models for interval censored data. Currently supports Cox-PH, proportional odds, and accelerated failure time models. Allows for semi and fully parametric models (parametric only for accelerated failure time models) and Bayesian parametric models. Includes functions for easy visual diagnostics of model fits and imputation of censored data.
The 14th generation International Geomagnetic Reference Field (IGRF). A standard spherical harmonic representation of the Earth's main field.
This package provides a multi-layered untargeted pipeline for high-throughput LC/HRMS data processing to extract signals of organic small molecules. The package performs ion pairing, peak detection, peak table alignment, retention time correction, aligned peak table gap filling, peak annotation and visualization of extracted ion chromatograms (EICs) and total ion chromatograms (TICs). The IDSL.IPA package was introduced in <doi:10.1021/acs.jproteome.2c00120> .
Facilitates access to the International Union for Conservation of Nature (IUCN) Red List of Threatened Species, a comprehensive global inventory of species at risk of extinction. This package streamlines the process of determining conservation status by matching species names with Red List data, providing tools to easily query and retrieve conservation statuses. Designed to support biodiversity research and conservation planning, this package relies on data from the iucnrdata package, available on GitHub <https://github.com/PaulESantos/iucnrdata>. To install the data package, use pak::pak('PaulESantos/iucnrdata').
Combining genomic prediction with Monte Carlo simulation, three different strategies are implemented to select parental lines for multiple traits in plant breeding. The selection strategies include (i) GEBV-O considers only genomic estimated breeding values (GEBVs) of the candidate individuals; (ii) GD-O considers only genomic diversity (GD) of the candidate individuals; and (iii) GEBV-GD considers both GEBV and GD. The above method can be seen in Chung PY, Liao CT (2020) <doi:10.1371/journal.pone.0243159>. Multi-trait genomic best linear unbiased prediction (MT-GBLUP) model is used to simultaneously estimate GEBVs of the target traits, and then a selection index is adopted to evaluate the composite performance of an individual.
Reverse engineer a regular expression pattern for the characters contained in an R object. Individual characters can be categorised into digits, letters, punctuation or spaces and encoded into run-lengths. This can be used to summarise the structure of a dataset or identify non-standard entries. Many non-character inputs such as numeric vectors and data frames are supported.
The core of the package is cvr2.ipflasso(), an extension of glmnet to be used when the (large) set of available predictors is partitioned into several modalities which potentially differ with respect to their information content in terms of prediction. For example, in biomedical applications patient outcome such as survival time or response to therapy may have to be predicted based on, say, mRNA data, miRNA data, methylation data, CNV data, clinical data, etc. The clinical predictors are on average often much more important for outcome prediction than the mRNA data. The ipflasso method takes this problem into account by using different penalty parameters for predictors from different modalities. The ratio between the different penalty parameters can be chosen from a set of optional candidates by cross-validation or alternatively generated from the input data.
Computes bilateral and multilateral index numbers. It has support for many standard bilateral indexes as well as multilateral index number methods such as GEKS, GEKS-Tornqvist (or CCDI), Geary-Khamis and the weighted time product dummy (for details on these methods see Diewert and Fox (2020) <doi:10.1080/07350015.2020.1816176>). It also supports updating of multilateral indexes using several splicing methods.
This package provides functions are provided to facilitate prior elicitation for Bayesian generalised linear models using independent conditional means priors. The package supports the elicitation of multivariate normal priors for generalised linear models. The approach can be applied to indirect elicitation for a generalised linear model that is linear in the parameters. The package is designed such that the facilitator executes functions within the R console during the elicitation session to provide graphical and numerical feedback at each design point. Various methodologies for eliciting fractiles (equivalently, percentiles or quantiles) are supported, including versions of the approach of Hosack et al. (2017) <doi:10.1016/j.ress.2017.06.011>. For example, experts may be asked to provide central credible intervals that correspond to a certain probability. Or experts may be allowed to vary the probability allocated to the central credible interval for each design point. Additionally, a median may or may not be elicited.
This package provides a fresh take on iterators in R. Designed to be cross-compatible with the iterators package, but using the nextOr method will offer better performance as well as more compact code. With batteries included: includes a collection of iterator constructors and combinators ported and refined from the iterators', itertools', and itertools2 packages.
Compute several variations of the Implicit Association Test (IAT) scores, including the D scores (Greenwald, Nosek, Banaji, 2003, <doi:10.1037/0022-3514.85.2.197>) and the new scores that were developed using robust statistics (Richetin, Costantini, Perugini, and Schonbrodt, 2015, <doi:10.1371/journal.pone.0129601>).
Interactive shiny application for running Item Response Theory analysis. Provides graphics for characteristic and information curves.
R interface to access the web services of the ICES Stock Database <https://sd.ices.dk>.
Geostatistical interpolation has traditionally been done by manually fitting a variogram and then interpolating. Here, we introduce classes and methods that can do this interpolation automatically. Pebesma et al (2010) gives an overview of the methods behind and possible usage <doi:10.1016/j.cageo.2010.03.019>.
The inti package is part of the inkaverse project for developing different procedures and tools used in plant science and experimental designs. The mean aim of the package is to support researchers during the planning of experiments and data collection (tarpuy()), data analysis and graphics (yupana()) , and scientific writing. Learn more about the inkaverse project at <https://inkaverse.com/>.
Integration of disparate datasets is needed in order to make efficient use of all available data and thereby address the issues currently threatening biodiversity. Data integration is a powerful modeling framework which allows us to combine these datasets together into a single model, yet retain the strengths of each individual dataset. We therefore introduce the package, intSDM': an R package designed to help ecologists develop a reproducible workflow of integrated species distribution models, using data both provided from the user as well as data obtained freely online. An introduction to data integration methods is discussed in Issac, Jarzyna, Keil, Dambly, Boersch-Supan, Browning, Freeman, Golding, Guillera-Arroita, Henrys, Jarvis, Lahoz-Monfort, Pagel, Pescott, Schmucki, Simmonds and Oâ Hara (2020) <doi:10.1016/j.tree.2019.08.006>.