Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An interface for fitting generalized additive models (GAMs) and generalized additive mixed models (GAMMs) using the lme4 package as the computational engine, as described in Helwig (2024) <doi:10.3390/stats7010003>. Supports default and formula methods for model specification, additive and tensor product splines for capturing nonlinear effects, and automatic determination of spline type based on the class of each predictor. Includes an S3 plot method for visualizing the (nonlinear) model terms, an S3 predict method for forming predictions from a fit model, and an S3 summary method for conducting significance testing using the Bayesian interpretation of a smoothing spline.
This package provides convenient access to the official spatial datasets of Peru as sf objects in R. This package includes a wide range of geospatial data covering various aspects of Peruvian geography, such as: administrative divisions (Source: INEI <https://ide.inei.gob.pe/>), protected natural areas (Source: GEO ANP - SERNANP <https://geo.sernanp.gob.pe/visorsernanp/>). All datasets are harmonized in terms of attributes, projection, and topology, ensuring consistency and ease of use for spatial analysis and visualization.
Density, distribution function, quantile function and random generation for the bimodal skew symmetric normal distribution of Hassan and El-Bassiouni (2016) <doi:10.1080/03610926.2014.882950>.
Enables calculation of image textures (Haralick 1973) <doi:10.1109/TSMC.1973.4309314> from grey-level co-occurrence matrices (GLCMs). Supports processing images that cannot fit in memory.
Owing to the rich shapes of Generalised Lambda Distributions (GLDs), GLD standard/quantile/Accelerated Failure Time (AFT) regression is a competitive flexible model compared to standard/quantile/AFT regression. The proposed method has some major advantages: 1) it provides a reference line which is very robust to outliers with the attractive property of zero mean residuals and 2) it gives a unified, elegant quantile regression model from the reference line with smooth regression coefficients across different quantiles. For AFT model, it also eliminates the needs to try several different AFT models, owing to the flexible shapes of GLD. The goodness of fit of the proposed model can be assessed via QQ plots and Kolmogorov-Smirnov tests and data driven smooth test, to ensure the appropriateness of the statistical inference under consideration. Statistical distributions of coefficients of the GLD regression line are obtained using simulation, and interval estimates are obtained directly from simulated data. References include the following: Su (2015) "Flexible Parametric Quantile Regression Model" <doi:10.1007/s11222-014-9457-1>, Su (2021) "Flexible parametric accelerated failure time model"<doi:10.1080/10543406.2021.1934854>.
Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package implemented a granularity-based dimension-agnostic tool for the identification of spatially variable genes. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).
Wrapper around geom_histogram() of ggplot2 to plot the histogram of a numeric vector. This is especially useful, since qplot() was deprecated in ggplot2 3.4.0.
Modified versions of the lag() and summary() functions: glag() and gsummary(). The prefix g is a reminder of who to blame if things do not work as they should.
Genetic algorithm are a class of optimization algorithms inspired by the process of natural selection and genetics. This package is for learning purposes and allows users to optimize various functions or parameters by mimicking biological evolution processes such as selection, crossover, and mutation. Ideal for tasks like machine learning parameter tuning, mathematical function optimization, and solving an optimization problem that involves finding the best solution in a discrete space.
Using simple input, this package creates plots of gene models. Users can create plots of alternatively spliced gene variants and the positions of mutations and other gene features.
One can find single-stage and two-stage designs for a phase II single-arm study with either efficacy or safety/toxicity endpoints as described in Kim and Wong (2019) <doi:10.29220/CSAM.2019.26.2.163>.
Analyze small-sample clustered or longitudinal data using modified generalized estimating equations with bias-adjusted covariance estimator. The package provides any combination of three modified generalized estimating equations and 11 bias-adjusted covariance estimators.
Genomic biology is not limited to the confines of the canonical B-forming DNA duplex, but includes over ten different types of other secondary structures that are collectively termed non-B DNA structures. Of these non-B DNA structures, the G-quadruplexes are highly stable four-stranded structures that are recognized by distinct subsets of nuclear factors. This package provide functions for predicting intramolecular G quadruplexes. In addition, functions for predicting other intramolecular nonB DNA structures are included.
The Global Biodiversity Information Facility ('GBIF', <https://www.gbif.org>) sources data from an international network of data providers, known as nodes'. Several of these nodes - the "living atlases" (<https://living-atlases.gbif.org>) - maintain their own web services using software originally developed by the Atlas of Living Australia ('ALA', <https://www.ala.org.au>). galah enables the R community to directly access data and resources hosted by GBIF and its partner nodes.
Specification, analysis, simulation, and fitting of generalised linear mixed models. Includes Markov Chain Monte Carlo Maximum likelihood model fitting for a range of models, non-linear fixed effect specifications, a wide range of flexible covariance functions that can be combined arbitrarily, robust and bias-corrected standard error estimation, power calculation, data simulation, and more.
Implementation of various inference and simulation tools to apply generalized additive models to bivariate dependence structures and non-simplified vine copulas.
This is a dataset package for GANPA, which implements a network-based gene weighting approach to pathway analysis. This package includes data useful for GANPA, such as a functional association network, pathways, an expression dataset and multi-subunit proteins.
This package provides functions for simulating and estimating parameters of various growth models, including Logistic, Exponential, Theta-logistic, Von-Bertalanffy, and Gompertz models. The package supports both simulated and real data analysis, including parameter estimation, visualization, and calculation of global and local estimates. The methods are based on research described by Md Aktar Ul Karim and Amiya Ranjan Bhowmick (2022) in (<https://www.researchsquare.com/article/rs-2363586/v1>). An interactive web application is also available at [GPEMR Web App](<https://gpem-r.shinyapps.io/GPEM-R/>).
This package provides tools for simulating from spatial modeling of individual level of infectious disease transmission when co-variates measured with error, and carrying out infectious disease data analyses with the same models. The epidemic models considered are distance-based model within Susceptible-Infectious-Removed (SIR) compartmental frameworks.
This package implements the GALAHAD algorithm (Geometry-Adaptive Lyapunov'-Assured Hybrid Optimizer), combining Riemannian metrics, Lyapunov stability checks, and trust-region methods for stable optimization of mixed-geometry parameters. Designed for biological modeling (germination, dose-response, survival) where rates, concentrations, and unconstrained variables coexist. Developed at the Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota. Based on Conn et al. (2000) <doi:10.1137/1.9780898719857>, Amari (1998) <doi:10.1162/089976698300017746>, Beck & Teboulle (2003) <doi:10.1016/S0167-6377(02)00231-6>, Nesterov (2017) <https://www.jstor.org/stable/resrep30722>, and Walne et al. (2020) <doi:10.1002/agg2.20098>.
This package implements a flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology following Cannon (2010) <doi:10.1002/hyp.7506>.
The purpose is to account for the random displacements (jittering) of true survey household cluster center coordinates in geostatistical analyses of Demographic and Health Surveys program (DHS) data. Adjustment for jittering can be implemented either in the spatial random effect, or in the raster/distance based covariates, or in both. Detailed information about the methods behind the package functionality can be found in our two papers. Umut Altay, John Paige, Andrea Riebler, Geir-Arne Fuglstad (2024) <doi:10.32614/RJ-2024-027>. Umut Altay, John Paige, Andrea Riebler, Geir-Arne Fuglstad (2023) <doi:10.1177/1471082X231219847>.
This package provides tools for quantitative analysis in gender studies, including functions to calculate various gender inequality metrics such as the Gender Pay Gap, Gender Inequality Index (GII), Gender Development Index (GDI), and Gender Empowerment Measure (GEM). Also includes extracted secondary example datasets for practice and learning purposes, which were obtained from the UNDP Human Development Reports Data Center and the World Bank Gender Data Portal by the author the dataset is available on <doi:10.34740/kaggle/dsv/6359326>. References: Miller, Kevin; Vagins, Deborah J. (2021) <https://eric.ed.gov/?id=ED596219>. Jacques Charmes & Saskia Wieringa (2003) <doi:10.1080/1464988032000125773>. Gaëlle Ferrant (2010) <https://shs.hal.science/halshs-00462463/>.
Read, manipulate, and digitize landmark data, generate shape variables via Procrustes analysis for points, curves and surfaces, perform shape analyses, and provide graphical depictions of shapes and patterns of shape variation.