Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Gaussian processes are flexible distributions to model functional data. Whilst theoretically appealing, they are computationally cumbersome except for small datasets. This package implements two methods for scaling Gaussian process inference in Stan'. First, a sparse approximation of the likelihood that is generally applicable and, second, an exact method for regularly spaced data modeled by stationary kernels using fast Fourier methods. Utility functions are provided to compile and fit Stan models using the cmdstanr interface. References: Hoffmann and Onnela (2025) <doi:10.18637/jss.v112.i02>.
Homogenize GNSS (Global Navigation Satellite System) time-series. The general model is a segmentation in the mean model including a periodic function and considering monthly variances, see Quarello (2020) <arXiv:2005.04683>.
GWAS R API Data Download. This package provides easy access to the NHGRI'-'EBI GWAS Catalog data by accessing the REST API <https://www.ebi.ac.uk/gwas/rest/docs/api/>.
Specification, analysis, simulation, and fitting of generalised linear mixed models. Includes Markov Chain Monte Carlo Maximum likelihood model fitting for a range of models, non-linear fixed effect specifications, a wide range of flexible covariance functions that can be combined arbitrarily, robust and bias-corrected standard error estimation, power calculation, data simulation, and more.
This package provides a path-following algorithm for L1 regularized generalized linear models and Cox proportional hazards model.
Identifies implausible anthropometric (e.g., height, weight) measurements in irregularly spaced longitudinal datasets, such as those from electronic health records.
This package provides publication-ready volcano plots for visualizing differential expression results, commonly used in RNA-seq and similar analyses. This tool helps create high-quality visual representations of data using the ggplot2 framework Wickham (2016) <doi:10.1007/978-3-319-24277-4>.
Builds a LASSO, Ridge, or Elastic Net model with glmnet or cv.glmnet with bootstrap inference statistics (SE, CI, and p-value) for selected coefficients with no shrinkage applied for them. Model performance can be evaluated on test data and an automated alpha selection is implemented for Elastic Net. Parallelized computation is used to speed up the process. The methods are described in Friedman et al. (2010) <doi:10.18637/jss.v033.i01> and Simon et al. (2011) <doi:10.18637/jss.v039.i05>.
This package provides automated downloading, parsing, cleaning, unit conversion and formatting of Global Surface Summary of the Day ('GSOD') weather data from the from the USA National Centers for Environmental Information ('NCEI'). Units are converted from from United States Customary System ('USCS') units to International System of Units ('SI'). Stations may be individually checked for number of missing days defined by the user, where stations with too many missing observations are omitted. Only stations with valid reported latitude and longitude values are permitted in the final data. Additional useful elements, saturation vapour pressure ('es'), actual vapour pressure ('ea') and relative humidity ('RH') are calculated from the original data using the improved August-Roche-Magnus approximation (Alduchov & Eskridge 1996) and included in the final data set. The resulting metadata include station identification information, country, state, latitude, longitude, elevation, weather observations and associated flags. For information on the GSOD data from NCEI', please see the GSOD readme.txt file available from, <https://www1.ncdc.noaa.gov/pub/data/gsod/readme.txt>.
This package provides a pipeline with high specificity and sensitivity in extracting proteins from the RefSeq database (National Center for Biotechnology Information). Manual identification of gene families is highly time-consuming and laborious, requiring an iterative process of manual and computational analysis to identify members of a given family. The pipelines implements an automatic approach for the identification of gene families based on the conserved domains that specifically define that family. See Die et al. (2018) <doi:10.1101/436659> for more information and examples.
Calculates the cost of crossing in terms of the number of individuals and generations, which is theoretically formulated by Servin et al. (2004) <DOI:10.1534/genetics.103.023358>. This package has been designed for selecting appropriate parental genotypes and find the most efficient crossing scheme for gene pyramiding, especially for plant breeding.
Utilizing Generative Artificial Intelligence models like GPT-4 and Gemini Pro as coding and writing assistants for R users. Through these models, GenAI offers a variety of functions, encompassing text generation, code optimization, natural language processing, chat, and image interpretation. The goal is to aid R users in streamlining laborious coding and language processing tasks.
An Rstudio addin for version control that allows users to clone repositories, create and delete branches, and sync forks on GitHub, GitLab, etc. Furthermore, the addin uses the GitLab API to allow instructors to create forks and merge requests for all students/teams with one click of a button.
In computationally demanding data analysis pipelines, the targets R package (2021, <doi:10.21105/joss.02959>) maintains an up-to-date set of results while skipping tasks that do not need to rerun. This process increases speed and increases trust in the final end product. However, it also overwrites old output with new output, and past results disappear by default. To preserve historical output, the gittargets package captures version-controlled snapshots of the data store, and each snapshot links to the underlying commit of the source code. That way, when the user rolls back the code to a previous branch or commit, gittargets can recover the data contemporaneous with that commit so that all targets remain up to date.
This package provides tools for working with polygons with holes in ggplot2', with a new geom for drawing a polypath applying the evenodd or winding rules.
Simulates from discrete and continuous target distributions using geometric Metropolis-Hastings (MH) algorithms. Users specify the target distribution by an R function that evaluates the log un-normalized pdf or pmf. The package also contains a function implementing a specific geometric MH algorithm for performing high dimensional Bayesian variable selection.
This package provides tools for fitting statistical network models to dynamic network data. Can be used for fitting both dynamic network actor models ('DyNAMs') and relational event models ('REMs'). Stadtfeld, Hollway, and Block (2017a) <doi:10.1177/0081175017709295>, Stadtfeld, Hollway, and Block (2017b) <doi:10.1177/0081175017733457>, Stadtfeld and Block (2017) <doi:10.15195/v4.a14>, Hoffman et al. (2020) <doi:10.1017/nws.2020.3>.
Download geyser eruption and observation data from the GeyserTimes site (<https://geysertimes.org>) and optionally store it locally. The vignette shows a simple analysis of downloading, accessing, and summarizing the data.
Utility functions to read, manipulate, analyse and write transit feeds in the General Transit Feed Specification (GTFS) data format.
Generation of survival data with one (binary) time-dependent covariate. Generation of survival data arising from a progressive illness-death model.
This package provides a simple way to interact with and extract data from the official Google Knowledge Graph API <https://developers.google.com/knowledge-graph/>.
This package provides functions to estimate the disparities across categories (e.g. Black and white) that persists if a treatment variable (e.g. college) is equalized. Makes estimates by treatment modeling, outcome modeling, and doubly-robust augmented inverse probability weighting estimation, with standard errors calculated by a nonparametric bootstrap. Cross-fitting is supported. Survey weights are supported for point estimation but not for standard error estimation; those applying this package with complex survey samples should consult the data distributor to select an appropriate approach for standard error construction, which may involve calling the functions repeatedly for many sets of replicate weights provided by the data distributor. The methods in this package are described in Lundberg (2021) <doi:10.31235/osf.io/gx4y3>.
This package contains five functions performing the calculation of unconditional and conditional Granger-causality spectra, bootstrap inference on both, and inference on the difference between them via the bootstrap approach of Farne and Montanari, 2018 <arXiv:1803.00374>.
Flexible and robust estimation and inference of Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models with covariates ('X') based on the results by Francq and Thieu (2019) <doi:10.1017/S0266466617000512>. Coefficients can straightforwardly be set to zero by omission, and quasi maximum likelihood methods ensure estimates are generally consistent and inference valid, even when the standardised innovations are non-normal and/or dependent over time. See <doi:10.32614/RJ-2021-057> for an overview of the package.