Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package was automatically created by package AnnotationForge version 1.11.20. The probe sequence data was obtained from http://www.affymetrix.com.
The NetSAM (Network Seriation and Modularization) package takes an edge-list representation of a weighted or unweighted network as an input, performs network seriation and modularization analysis, and generates as files that can be used as an input for the one-dimensional network visualization tool NetGestalt (http://www.netgestalt.org) or other network analysis. The NetSAM package can also generate correlation network (e.g. co-expression network) based on the input matrix data, perform seriation and modularization analysis for the correlation network and calculate the associations between the sample features and modules or identify the associated GO terms for the modules.
Cap Analysis of Gene Expression (CAGE) data from "Identification of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure in Vivo" by Bornholdt et al. supplied as CAGE Transcription Start Sites (CTSSs).
netSmooth is an R package for network smoothing of single cell RNA sequencing data. Using bio networks such as protein-protein interactions as priors for gene co-expression, netsmooth improves cell type identification from noisy, sparse scRNAseq data.
Computes Multiple Co-Inertia Analysis (MCIA), a dimensionality reduction (jDR) algorithm, for a multi-block dataset using a modification to the Nonlinear Iterative Partial Least Squares method (NIPALS) proposed in (Hanafi et. al, 2010). Allows multiple options for row- and table-level preprocessing, and speeds up computation of variance explained. Vignettes detail application to bulk- and single cell- multi-omics studies.
Norway981 http://genome-www5.stanford.edu/ Annotation Data (Norway981) assembled using data from public repositories.
This package provides functionality for untargeted LC-MS metabolomics research as specified in the associated protocol article in the Metabolomics Data Processing and Data Analysis—Current Best Practices special issue of the Metabolites journal (2020). This includes tabular data preprocessing and quality control, uni- and multivariate analysis as well as quality control visualizations, feature-wise visualizations and results visualizations. Raw data preprocessing and functionality related to biological context, such as pathway analysis, is not included.
This package provides univariate and multivariate statistics for feature prioritization in untargeted LC-MS metabolomics research.
Robust normalization and difference calling procedures for ChIP-seq and alike data. Read counts are modeled jointly as a binomial mixture model with a user-specified number of components. A fitted background estimate accounts for the effect of enrichment in certain regions and, therefore, represents an appropriate null hypothesis. This robust background is used to identify significantly enriched or depleted regions.
Subset of BAM files of human lung tumor and pooled normal samples by targeted panel sequencing. [Zhao et al 2014. Targeted Sequencing in Non-Small Cell Lung Cancer (NSCLC) Using the University of North Carolina (UNC) Sequencing Assay Captures Most Previously Described Genetic Aberrations in NSCLC. In preparation.] Each sample is a 10 percent random subsample drawn from the original sequencing data. The pooled normal sample has been rescaled accroding to the total number of normal samples in the "pool". Here provided is the subsampled data on chr6 (hg19).
NanoMethViz is a toolkit for visualising methylation data from Oxford Nanopore sequencing. It can be used to explore methylation patterns from reads derived from Oxford Nanopore direct DNA sequencing with methylation called by callers including nanopolish, f5c and megalodon. The plots in this package allow the visualisation of methylation profiles aggregated over experimental groups and across classes of genomic features.
NetPathMiner is a general framework for network path mining using genome-scale networks. It constructs networks from KGML, SBML and BioPAX files, providing three network representations, metabolic, reaction and gene representations. NetPathMiner finds active paths and applies machine learning methods to summarize found paths for easy interpretation. It also provides static and interactive visualizations of networks and paths to aid manual investigation.
This package provides next-generation sequencing (NGS) and mass spectrometry (MS) sample data, code snippets and replication material used for developing NestLink. The NestLink approach is a protein binder selection and identification technology able to biophysically characterize thousands of library members at once without handling individual clones at any stage of the process. Data were acquired on NGS and MS platforms at the Functional Genomics Center Zurich.
Affymetrix nugomm1a520177 annotation data (chip nugomm1a520177) assembled using data from public repositories.
NuPoP is an R package for Nucleosome Positioning Prediction.This package is built upon a duration hidden Markov model proposed in Xi et al, 2010; Wang et al, 2008. The core of the package was written in Fotran. In addition to the R package, a stand-alone Fortran software tool is also available at https://github.com/jipingw. The Fortran codes have complete functonality as the R package. Note: NuPoP has two separate functions for prediction of nucleosome positioning, one for MNase-map trained models and the other for chemical map-trained models. The latter was implemented for four species including yeast, S.pombe, mouse and human, trained based on our recent publications. We noticed there is another package nuCpos by another group for prediction of nucleosome positioning trained with chemicals. A report to compare recent versions of NuPoP with nuCpos can be found at https://github.com/jiping/NuPoP_doc. Some more information can be found and will be posted at https://github.com/jipingw/NuPoP.
High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation.
NormalyzerDE provides screening of normalization methods for LC-MS based expression data. It calculates a range of normalized matrices using both existing approaches and a novel time-segmented approach, calculates performance measures and generates an evaluation report. Furthermore, it provides an easy utility for Limma- or ANOVA- based differential expression analysis.
The NanoporeRNASeq package contains long read RNA-Seq data generated using Oxford Nanopore Sequencing. The data consists of 6 samples from two human cell lines (K562 and MCF7) that were generated by the SG-NEx project. Each of these cell lines has three replicates, with 1 direct RNA sequencing data and 2 cDNA sequencing data. Reads are aligned to chromosome 22 (Grch38) and stored as bam files. The original data is from the SG-NEx project.
NanoTube includes functions for the processing, quality control, analysis, and visualization of NanoString nCounter data. Analysis functions include differential analysis and gene set analysis methods, as well as postprocessing steps to help understand the results. Additional functions are included to enable interoperability with other Bioconductor NanoString data analysis packages.
ncRNAtools provides a set of basic tools for handling and analyzing non-coding RNAs. These include tools to access the RNAcentral database and to predict and visualize the secondary structure of non-coding RNAs. The package also provides tools to read, write and interconvert the file formats most commonly used for representing such secondary structures.
NxtIRFdata is a companion package for SpliceWiz, an interactive analysis and visualization tool for alternative splicing quantitation (including intron retention) for RNA-seq BAM files. NxtIRFdata contains Mappability files required for the generation of human and mouse references. NxtIRFdata also contains a synthetic genome reference and example BAM files used to demonstrate SpliceWiz's functionality. BAM files are based on 6 samples from the Leucegene dataset provided by NCBI Gene Expression Omnibus under accession number GSE67039.
This package predicts the gene-gene interaction network and identifies the direct transcriptional targets of the perturbation using an ODE (Ordinary Differential Equation) based method.
Boosting supported network analysis for high-dimensional omics applications. This package comes bundled with the MC-UPGMA clustering package by Yaniv Loewenstein.
This package contains the weights from pre-trained shallow sparsely-connected autoencoders. This data is required for getting the gene set scores with NetActivity package.