Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a framework that joins topic modeling and sentiment analysis of textual data. The package implements a fast Gibbs sampling estimation of Latent Dirichlet Allocation (Griffiths and Steyvers (2004) <doi:10.1073/pnas.0307752101>) and Joint Sentiment/Topic Model (Lin, He, Everson and Ruger (2012) <doi:10.1109/TKDE.2011.48>). It offers a variety of helpers and visualizations to analyze the result of topic modeling. The framework also allows enriching topic models with dates and externally computed sentiment measures. A flexible aggregation scheme enables the creation of time series of sentiment or topical proportions from the enriched topic models. Moreover, a novel method jointly aggregates topic proportions and sentiment measures to derive time series of topical sentiment.
This package provides a seamless design that combines phase I dose escalation based on toxicity with phase II dose expansion and dose comparison based on efficacy.
This package provides confidence intervals in least-squares regressions when the variable of interest has a shift-share structure, and in instrumental variables regressions when the instrument has a shift-share structure. The confidence intervals implement the AKM and AKM0 methods developed in Adão, Kolesár, and Morales (2019) <doi:10.1093/qje/qjz025>.
Estimate the size of a networked population based on respondent-driven sampling data. The package is part of the "RDS Analyst" suite of packages for the analysis of respondent-driven sampling data. See Handcock, Gile and Mar (2014) <doi:10.1214/14-EJS923>, Handcock, Gile and Mar (2015) <doi:10.1111/biom.12255>, Kim and Handcock (2021) <doi:10.1093/jssam/smz055>, and McLaughlin, et. al. (2023) <doi:10.1214/23-AOAS1807>.
This package provides a shiny interface for a simpler use of the sbm R package. It also contains useful functions to easily explore the sbm package results. With this package you should be able to use the stochastic block model without any knowledge in R, get automatic reports and nice visuals, as well as learning the basic functions of sbm'.
The purpose of this package is to manipulate SVG files that are templates of charts the user wants to produce. In vector graphics one copes with x-/y-coordinates of elements (e.g. lines, rectangles, text). Their scale is often dependent on the program that is used to produce the graphics. In applied statistics one usually has numeric values on a fixed scale (e.g. percentage values between 0 and 100) to show in a chart. Basically, svgtools transforms the statistical values into coordinates and widths/heights of the vector graphics. This is done by stackedBar() for bar charts, by linesSymbols() for charts with lines and/or symbols (dot markers) and scatterSymbols() for scatterplots.
We designed this package to provides several functions for area and subarea level of small area estimation under Twofold Subarea Level Model using hierarchical Bayesian (HB) method with Univariate Normal distribution for variables of interest. Some dataset simulated by a data generation are also provided. The rjags package is employed to obtain parameter estimates using Gibbs Sampling algorithm. Model-based estimators involves the HB estimators which include the mean, the variation of mean, and the quantile. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>, Torabi and Rao (2014) <doi:10.1016/j.jmva.2014.02.001>, Leyla Mohadjer et al.(2007) <http://www.asasrms.org/Proceedings/y2007/Files/JSM2007-000559.pdf>, and Erciulescu et al.(2019) <doi:10.1111/rssa.12390>.
Generates and evaluates D, I, A, Alias, E, T, and G optimal designs. Supports generation and evaluation of blocked and split/split-split/.../N-split plot designs. Includes parametric and Monte Carlo power evaluation functions, and supports calculating power for censored responses. Provides a framework to evaluate power using functions provided in other packages or written by the user. Includes a Shiny graphical user interface that displays the underlying code used to create and evaluate the design to improve ease-of-use and make analyses more reproducible. For details, see Morgan-Wall et al. (2021) <doi:10.18637/jss.v099.i01>.
Automatically calculate direct, indirect, and total effects for piecewise structural equation models, comprising lists of fitted models representing structured equations (Lefcheck, 2016 <doi:10/f8s8rb>). Confidence intervals are provided via bootstrapping.
This package provides a computing tool is developed to automated identify somatic mutation-driven immune cells. The operation modes including: i) inferring the relative abundance matrix of tumor-infiltrating immune cells and integrating it with a particular gene mutation status, ii) detecting differential immune cells with respect to the gene mutation status and converting the abundance matrix of significant differential immune cell into two binary matrices (one for up-regulated and one for down-regulated), iii) identifying somatic mutation-driven immune cells by comparing the gene mutation status with each immune cell in the binary matrices across all samples, and iv) visualization of immune cell abundance of samples in different mutation status..
Work with containers over the Docker API. Rather than using system calls to interact with a docker client, using the API directly means that we can receive richer information from docker. The interface in the package is automatically generated using the OpenAPI (a.k.a., swagger') specification, and all return values are checked in order to make them type stable.
An R wrapper for pulling data from the Spotify Web API <https://developer.spotify.com/documentation/web-api/> in bulk, or post items on a Spotify user's playlist.
This package provides tools for spatial data analysis. Emphasis on kriging. Provides functions for prediction and simulation. Intended to be relatively straightforward, fast, and flexible.
This package provides a collection of functions for statistical and multivariate analysis of surface-related data, with a focus on antimicrobial activity and omniphobicity. Designed to support materials scientists and researchers in exploring structureâ function relationships in surface-engineered materials through reproducible and interpretable workflows. For more details, see Li et al. (2021) <doi:10.1002/advs.202100368>, and Kwon et al. (2020) <doi:10.3390/polym12081826>.
This package provides functions to perform most of the common analysis in genome association studies are implemented. These analyses include descriptive statistics and exploratory analysis of missing values, calculation of Hardy-Weinberg equilibrium, analysis of association based on generalized linear models (either for quantitative or binary traits), and analysis of multiple SNPs (haplotype and epistasis analysis). Permutation test and related tests (sum statistic and truncated product) are also implemented. Max-statistic and genetic risk-allele score exact distributions are also possible to be estimated. The methods are described in Gonzalez JR et al., 2007 <doi: 10.1093/bioinformatics/btm025>.
Offers markdown output formats designed with various styles, allowing users to generate HTML reports tailored for scientific or machine learning showcase. The output has a contemporary appearance with vibrant visuals, providing numerous styles for effective highlighting. Created using the tufte <https://rstudio.github.io/tufte/> package code as a starting point.
Implementation of the SRCS method for a color-based visualization of the results of multiple pairwise tests on a large number of problem configurations, proposed in: I.G. del Amo, D.A. Pelta. SRCS: a technique for comparing multiple algorithms under several factors in dynamic optimization problems. In: E. Alba, A. Nakib, P. Siarry (Eds.), Metaheuristics for Dynamic Optimization. Series: Studies in Computational Intelligence 433, Springer, Berlin/Heidelberg, 2012.
This package performs a dual-parameter sensitivity analysis of treatment effect to unmeasured confounding in observational studies with either survival or competing risks outcomes. Huang, R., Xu, R. and Dulai, P.S.(2020) <doi:10.1002/sim.8672>.
This package provides a set of tools for examining the design and analysis aspects of stepped wedge cluster randomized trials (SW CRT) based on a repeated cross-sectional or cohort sampling scheme (Hussey MA and Hughes JP (2007) Contemporary Clinical Trials 28:182-191).
Monte Carlo sampling algorithms for semiparametric Bayesian regression analysis. These models feature a nonparametric (unknown) transformation of the data paired with widely-used regression models including linear regression, spline regression, quantile regression, and Gaussian processes. The transformation enables broader applicability of these key models, including for real-valued, positive, and compactly-supported data with challenging distributional features. The samplers prioritize computational scalability and, for most cases, Monte Carlo (not MCMC) sampling for greater efficiency. Details of the methods and algorithms are provided in Kowal and Wu (2024) <doi:10.1080/01621459.2024.2395586>.
RStudio addin which provides a GUI to visualize and analyse networks. After finishing a session, the code to produce the plot is inserted in the current script. Alternatively, the function SNAhelperGadget() can be used directly from the console. Additional addins include the Netreader() for reading network files, Netbuilder() to create small networks via point and click, and the Componentlayouter() to layout networks with many components manually.
This package provides functionality to fit and simulate from stationary vine copula models for time series, see Nagler et al. (2022) <doi:10.1016/j.jeconom.2021.11.015>.
Input widget that allows to construct complex filtering queries in Shiny'. It's a wrapper for JavaScript library jQuery-QueryBuilder', check <https://querybuilder.js.org/>.
Calculate change point based on spectral clustering with the option to automatically calculate the number of clusters if this information is not available.