Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
DEMAND predicts Drug MoA by interrogating a cell context specific regulatory network with a small number (N >= 6) of compound-induced gene expression signatures, to elucidate specific proteins whose interactions in the network is dysregulated by the compound.
dandelionR is an R package for performing single-cell immune repertoire trajectory analysis, based on the original python implementation. It provides the necessary functions to interface with scRepertoire and a custom implementation of an absorbing Markov chain for pseudotime inference, inspired by the Palantir Python package.
DegCre generates associations between differentially expressed genes (DEGs) and cis-regulatory elements (CREs) based on non-parametric concordance between differential data. The user provides GRanges of DEG TSS and CRE regions with differential p-value and optionally log-fold changes and DegCre returns an annotated Hits object with associations and their calculated probabilities. Additionally, the package provides functionality for visualization and conversion to other formats.
This package provides an integrated analysis workflow for robust and reproducible analysis of mass spectrometry proteomics data for differential protein expression or differential enrichment. It requires tabular input (e.g. txt files) as generated by quantitative analysis softwares of raw mass spectrometry data, such as MaxQuant or IsobarQuant. Functions are provided for data preparation, filtering, variance normalization and imputation of missing values, as well as statistical testing of differentially enriched / expressed proteins. It also includes tools to check intermediate steps in the workflow, such as normalization and missing values imputation. Finally, visualization tools are provided to explore the results, including heatmap, volcano plot and barplot representations. For scientists with limited experience in R, the package also contains wrapper functions that entail the complete analysis workflow and generate a report. Even easier to use are the interactive Shiny apps that are provided by the package.
The depmap package is a data package that accesses datsets from the Broad Institute DepMap cancer dependency study using ExperimentHub. Datasets from the most current release are available, including RNAI and CRISPR-Cas9 gene knockout screens quantifying the genetic dependency for select cancer cell lines. Additional datasets are also available pertaining to the log copy number of genes for select cell lines, protein expression of cell lines as measured by reverse phase protein lysate microarray (RPPA), Transcript Per Million (TPM) data, as well as supplementary datasets which contain metadata and mutation calls for the other datasets found in the current release. The 19Q3 release adds the drug_dependency dataset, that contains cancer cell line dependency data with respect to drug and drug-candidate compounds. The 20Q2 release adds the proteomic dataset that contains quantitative profiling of proteins via mass spectrometry. This package will be updated on a quarterly basis to incorporate the latest Broad Institute DepMap Public cancer dependency datasets. All data made available in this package was generated by the Broad Institute DepMap for research purposes and not intended for clinical use. This data is distributed under the Creative Commons license (Attribution 4.0 International (CC BY 4.0)).
Duplication rate quality control for RNA-Seq datasets.
performing all the steps of gene expression meta-analysis considering the possible existence of missing genes. It provides the necessary functions to be able to perform the different methods of gene expression meta-analysis. In addition, it contains functions to apply quality controls, download GEO datasets and show graphical representations of the results.
data and software for checking Dressman JCO 25(5) 2007.
The main function is doppelgangR(), which takes as minimal input a list of ExpressionSet object, and searches all list pairs for duplicated samples. The search is based on the genomic data (exprs(eset)), phenotype/clinical data (pData(eset)), and "smoking guns" - supposedly unique identifiers found in pData(eset).
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was DrosGenome1\_probe\_tab.
The DaMiRseq package offers a tidy pipeline of data mining procedures to identify transcriptional biomarkers and exploit them for both binary and multi-class classification purposes. The package accepts any kind of data presented as a table of raw counts and allows including both continous and factorial variables that occur with the experimental setting. A series of functions enable the user to clean up the data by filtering genomic features and samples, to adjust data by identifying and removing the unwanted source of variation (i.e. batches and confounding factors) and to select the best predictors for modeling. Finally, a "stacking" ensemble learning technique is applied to build a robust classification model. Every step includes a checkpoint that the user may exploit to assess the effects of data management by looking at diagnostic plots, such as clustering and heatmaps, RLE boxplots, MDS or correlation plot.
This package provides a package containing an environment representing the Drosophila_2.cdf file.
This package reproduces the main pipeline to analyze the AMC-AJCCII-90 microarray data set in De Sousa et al. accepted by Nature Medicine in 2013.
Distance-correlation based Gene Set Analysis for longitudinal gene expression profiles. In longitudinal studies, the gene expression profiles were collected at each visit from each subject and hence there are multiple measurements of the gene expression profiles for each subject. The dcGSA package could be used to assess the associations between gene sets and clinical outcomes of interest by fully taking advantage of the longitudinal nature of both the gene expression profiles and clinical outcomes.
Dino normalizes single-cell, mRNA sequencing data to correct for technical variation, particularly sequencing depth, prior to downstream analysis. The approach produces a matrix of corrected expression for which the dependency between sequencing depth and the full distribution of normalized expression; many existing methods aim to remove only the dependency between sequencing depth and the mean of the normalized expression. This is particuarly useful in the context of highly sparse datasets such as those produced by 10X genomics and other uninque molecular identifier (UMI) based microfluidics protocols for which the depth-dependent proportion of zeros in the raw expression data can otherwise present a challenge.
This package predicts a drug’s primary target(s) or secondary target(s) by integrating large-scale genetic and drug screens from the Cancer Dependency Map project run by the Broad Institute. It further investigates whether the drug specifically targets the wild-type or mutated target forms. To show how to use this package in practice, we provided sample data along with step-by-step example.
DNAhapeR is an R/BioConductor package for ultra-fast, high-throughput predictions of DNA shape features. The package allows to predict, visualize and encode DNA shape features for statistical learning.
The diffUTR package provides a uniform interface and plotting functions for limma/edgeR/DEXSeq -powered differential bin/exon usage. It includes in addition an improved version of the limma::diffSplice method. Most importantly, diffUTR further extends the application of these frameworks to differential UTR usage analysis using poly-A site databases.
Intuitive framework for identifying spatially variable genes (SVGs) and differential spatial variable pattern (DSP) between conditions via edgeR, a popular method for performing differential expression analyses. Based on pre-annotated spatial clusters as summarized spatial information, DESpace models gene expression using a negative binomial (NB), via edgeR, with spatial clusters as covariates. SVGs are then identified by testing the significance of spatial clusters. For multi-sample, multi-condition datasets, we again fit a NB model via edgeR, incorporating spatial clusters, conditions and their interactions as covariates. DSP genes-representing differences in spatial gene expression patterns across experimental conditions-are identified by testing the interaction between spatial clusters and conditions.
Data package which provides default disease expression profiles, clusters and annotation information for use with the DrugVsDisease package.
This package provides functionality for performing divergence analysis as presented in Dinalankara et al, "Digitizing omics profiles by divergence from a baseline", PANS 2018. This allows the user to simplify high dimensional omics data into a binary or ternary format which encapsulates how the data is divergent from a specified baseline group with the same univariate or multivariate features.
This package performs degradation normalization in bulk RNA-seq data to improve differential expression analysis accuracy. It provides estimates for each gene within each sample.
DeeDeeExperiment is an S4 class extending the SingleCellExperiment class, designed to integrate and manage omics analysis results. It introduces two dedicated slots to store Differential Expression Analysis (DEA) results and Functional Enrichment Analysis (FEA) results, providing a structured approach for downstream analysis.
DiffLogo is an easy-to-use tool to visualize motif differences.