Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a tool to estimate the cell composition of DNA methylation whole blood sample measured on any platform technology (microarray and sequencing).
MesKit provides commonly used analysis and visualization modules based on mutational data generated by multi-region sequencing (MRS). This package allows to depict mutational profiles, measure heterogeneity within or between tumors from the same patient, track evolutionary dynamics, as well as characterize mutational patterns on different levels. Shiny application was also developed for a need of GUI-based analysis. As a handy tool, MesKit can facilitate the interpretation of tumor heterogeneity and the understanding of evolutionary relationship between regions in MRS study.
Translating mature miRNA names to different miRBase versions, sequence retrieval, checking names for validity and detecting miRBase version of a given set of names (data from http://www.mirbase.org/).
Clontech BD Atlas Long Oligos Mouse 5K annotation data (chip mguatlas5k) assembled using data from public repositories.
Detect binding sites using motifs IUPAC sequence or bed coordinates and ChIP-seq experiments in bed or bam format. Combine/compare binding sites across experiments, tissues, or conditions. All normalization and differential steps are done using TMM-GLM method. Signal decomposition is done by setting motifs as the centers of the mixture of normal distribution curves.
Affymetrix moex10 annotation data (chip moex10stprobeset) assembled using data from public repositories.
Computes Mantel cluster correlations from a (p x n) numeric data matrix (e.g. microarray gene-expression data).
This package was automatically created by package AnnotationForge version 1.7.17. The exon-level probeset genome location was retrieved from Netaffx using AffyCompatible.
Example data for MEDIPS and QSEA packages, consisting of chromosome 22 MeDIP and control/Input sample data. Additionally, the package contains MeDIP seq data from 3 NSCLC samples and adjacent normal tissue (chr 20-22). All data has been aligned to human genome hg19.
MEDIPS was developed for analyzing data derived from methylated DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-seq). However, MEDIPS provides functionalities for the analysis of any kind of quantitative sequencing data (e.g. ChIP-seq, MBD-seq, CMS-seq and others) including calculation of differential coverage between groups of samples and saturation and correlation analysis.
This package provides a collection of tools for doing various analyses of multi-state QTL data, with a focus on visualization and interpretation. The package multistateQTL contains functions which can remove or impute missing data, identify significant associations, as well as categorise features into global, multi-state or unique. The analysis results are stored in a QTLExperiment object, which is based on the SummarisedExperiment framework.
Simple and efficient workflow for time-course gene expression data, built on publictly available open-source projects hosted on CRAN and bioconductor. moanin provides helper functions for all the steps required for analysing time-course data using functional data analysis: (1) functional modeling of the timecourse data; (2) differential expression analysis; (3) clustering; (4) downstream analysis.
Identification of differentially expressed genes and false discovery rate (FDR) calculation by Multiple Comparison test.
mbQTL is a statistical R package for simultaneous 16srRNA,16srDNA (microbial) and variant, SNP, SNV (host) relationship, correlation, regression studies. We apply linear, logistic and correlation based statistics to identify the relationships of taxa, genus, species and variant, SNP, SNV in the infected host. We produce various statistical significance measures such as P values, FDR, BC and probability estimation to show significance of these relationships. Further we provide various visualization function for ease and clarification of the results of these analysis. The package is compatible with dataframe, MRexperiment and text formats.
This package provides a package containing an environment representing the miRNA-1_0_2Xgain.CDF file.
This package aligns LC-HRMS metabolomics datasets acquired from biologically similar specimens analyzed under similar, but not necessarily identical, conditions. Peak-picked and simply aligned metabolomics feature tables (consisting of m/z, rt, and per-sample abundance measurements, plus optional identifiers & adduct annotations) are accepted as input. The package outputs a combined table of feature pair alignments, organized into groups of similar m/z, and ranked by a similarity score. Input tables are assumed to be acquired using similar (but not necessarily identical) analytical methods.
To give the exactly p-value and q-value of MeDIP-seq and MRE-seq data for different samples comparation.
Agilent "Mouse Genome, Whole" annotation data (chip mgug4122a) assembled using data from public repositories.
MSstatsShiny is an R-Shiny graphical user interface (GUI) integrated with the R packages MSstats, MSstatsTMT, and MSstatsPTM. It provides a point and click end-to-end analysis pipeline applicable to a wide variety of experimental designs. These include data-dependedent acquisitions (DDA) which are label-free or tandem mass tag (TMT)-based, as well as DIA, SRM, and PRM acquisitions and those targeting post-translational modifications (PTMs). The application automatically saves users selections and builds an R script that recreates their analysis, supporting reproducible data analysis.
This package provides a seamless interface to the MEME Suite family of tools for motif analysis. memes provides data aware utilities for using GRanges objects as entrypoints to motif analysis, data structures for examining & editing motif lists, and novel data visualizations. memes functions and data structures are amenable to both base R and tidyverse workflows.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Medicago\_probe\_tab.
Multi-omic Pathway Analysis of Cells (MPAC), integrates multi-omic data for understanding cellular mechanisms. It predicts novel patient groups with distinct pathway profiles as well as identifying key pathway proteins with potential clinical associations. From CNA and RNA-seq data, it determines genes’ DNA and RNA states (i.e., repressed, normal, or activated), which serve as the input for PARADIGM to calculate Inferred Pathway Levels (IPLs). It also permutes DNA and RNA states to create a background distribution to filter IPLs as a way to remove events observed by chance. It provides multiple methods for downstream analysis and visualization.
Simulate a multigeneration methylation case versus control experiment with inheritance relation using a real control dataset.
MWASTools provides a complete pipeline to perform metabolome-wide association studies. Key functionalities of the package include: quality control analysis of metabonomic data; MWAS using different association models (partial correlations; generalized linear models); model validation using non-parametric bootstrapping; visualization of MWAS results; NMR metabolite identification using STOCSY; and biological interpretation of MWAS results.