Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
MDQC is a multivariate quality assessment method for microarrays based on quality control (QC) reports. The Mahalanobis distance of an array's quality attributes is used to measure the similarity of the quality of that array against the quality of the other arrays. Then, arrays with unusually high distances can be flagged as potentially low-quality.
The package ABAEnrichment is designed to test for enrichment of user defined candidate genes in the set of expressed genes in different human brain regions. The core function aba_enrich integrates the expression of the candidate gene set (averaged across donors) and the structural information of the brain using an ontology, both provided by the Allen Brain Atlas project.
This package contains class definitions, validity checks, and initialization methods for classes used by the oligo and crlmm packages.
This package provides a tool for non linear mapping (non linear regression) using a mixture of regression model and an inverse regression strategy. The methods include the GLLiM model (see Deleforge et al (2015) <DOI:10.1007/s11222-014-9461-5>) based on Gaussian mixtures and a robust version of GLLiM, named SLLiM (see Perthame et al (2016) <DOI:10.1016/j.jmva.2017.09.009>) based on a mixture of Generalized Student distributions. The methods also include BLLiM (see Devijver et al (2017) <arXiv:1701.07899>) which is an extension of GLLiM with a sparse block diagonal structure for large covariance matrices (particularly interesting for transcriptomic data).
Expedite large RNA-Seq analyses using a combination of previously developed tools. YARN is meant to make it easier for the user in performing basic mis-annotation quality control, filtering, and condition-aware normalization. YARN leverages many Bioconductor tools and statistical techniques to account for the large heterogeneity and sparsity found in very large RNA-seq experiments.
This package provides functions to plot data associated with arbitrary genomic intervals along chromosomal ideogram.
This package contains data for the ChIPexoQual package, consisting of 3 chromosome 1 aligned reads from a ChIP-exo experiment for FoxA1 in mouse liver cell lines aligned to the mm9 genome.
This package is an automatically generated RnBeads annotation package for the assembly hg19.
This package defines low-level functions for mass spectrometry data and is independent of any high-level data structures. These functions include mass spectra processing functions (noise estimation, smoothing, binning), quantitative aggregation functions (median polish, robust summarisation, etc.), missing data imputation, data normalisation (quantiles, vsn, etc.) as well as misc helper functions, that are used across high-level data structure within the R for Mass Spectrometry packages.
This package is a visualization and analysis toolbox for short time course data which includes dimensionality reduction, clustering, two-sample differential expression testing and gene ranking techniques. The package also provides methods for retrieving enriched pathways.
This is an annotation package for Illumina's EPIC methylation arrays.
This package defines data structures for linkage disequilibrium (LD) measures in populations. Its purpose is to simplify handling of existing population-level data for the purpose of flexibly defining LD blocks.
TFBSTools is a package for the analysis and manipulation of transcription factor binding sites. It includes matrices conversion between Position Frequency Matrix (PFM), Position Weight Matrix (PWM) and Information Content Matrix (ICM). It can also scan putative TFBS from sequence/alignment, query JASPAR database and provides a wrapper of de novo motif discovery software.
This package provides basic functions for filtering genes from high-throughput sequencing experiments.
This package provides tools to detect Gene Ontology and/or other user defined categories which are over/under represented in RNA-seq data.
This package provides code for generating Annotation packages and their databases. Packages produced are intended to be used with AnnotationDbi.
This package provides an interface to Affymetrix chip annotation and sample attribute files. The package allows an easy way for users to download and manage local data bases of Affynmetrix NetAffx annotation files. It also provides access to GeneChip Operating System (GCOS) and GeneChip Command Console (AGCC)-compatible sample annotation files.
This package provides a set of annotation maps describing the entire Human Disease Ontology. The annotation data comes from https://github.com/DiseaseOntology/HumanDiseaseOntology/tree/main/src/ontology.
This package offers interactive Shiny displays for Bioconductor objects. In addition, this package empowers users to develop engaging visualizations and interfaces for working with Bioconductor data.
This package generates interactive visualisations for analysis of RNA-sequencing data using output from limma, edgeR or DESeq2 packages in an HTML page. The interactions are built on top of the popular static representations of analysis results in order to provide additional information.
This package offers simple statistical identification of contaminating sequence features in marker-gene or metagenomics data. It works on any kind of feature derived from environmental sequencing data (e.g. ASVs, OTUs, taxonomic groups, MAGs, etc). Requires DNA quantitation data or sequenced negative control samples.
Feature selection is critical in omics data analysis to extract restricted and meaningful molecular signatures from complex and high-dimension data, and to build robust classifiers. This package implements a method to assess the relevance of the variables for the prediction performances of the classifier. The approach can be run in parallel with the PLS-DA, Random Forest, and SVM binary classifiers. The signatures and the corresponding 'restricted' models are returned, enabling future predictions on new datasets.
Graphite provides networks derived from eight public pathway databases, and automates the conversion of node identifiers (e.g. from Entrez IDs to gene symbols).
The objective of AGDEX is to evaluate whether the results of a pair of two-group differential expression analysis comparisons show a level of agreement that is greater than expected if the group labels for each two-group comparison are randomly assigned. The agreement is evaluated for the entire transcriptome and (optionally) for a collection of pre-defined gene-sets. Additionally, the procedure performs permutation-based differential expression and meta analysis at both gene and gene-set levels of the data from each experiment.