Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Uses bootstrap to test zero order correlation being equal to a partial or semi-partial correlation (one or two tailed). Confidence intervals for the parameter (zero order minus partial) can also be determined. Implements the bias-corrected and accelerated bootstrap method as described in "An Introduction to the Bootstrap" Efron (1983) <0-412-04231-2>.
Permutations tests to identify factor correlated to zero-inflated proportions response. Provide a performance indicator based on Spearman correlation to quantify the part of correlation explained by the selected set of factors. See details for the method at the following preprint e.g.: <https://hal.archives-ouvertes.fr/hal-02936779v3>.
Facilitates making a connection to the Zoom API and executing various queries. You can use it to get data on Zoom webinars and Zoom meetings. The Zoom documentation is available at <https://developers.zoom.us/docs/api/>. This package is not supported by Zoom (owner of the software).
Simulation, exploratory data analysis and Bayesian analysis of the p-order Integer-valued Autoregressive (INAR(p)) and Zero-inflated p-order Integer-valued Autoregressive (ZINAR(p)) processes, as described in Garay et al. (2020) <doi:10.1080/00949655.2020.1754819>.
Parameter estimation for zero-inflated discrete Weibull (ZIDW) regression models, the univariate setting, distribution functions, functions to generate randomized quantile residuals a pseudo R2, and plotting of rootograms. For more details, see Kalktawi (2017) <https://bura.brunel.ac.uk/handle/2438/14476>, Taconeli and Rodrigues de Lara (2022) <doi:10.1080/00949655.2021.2005597>, and Yeh and Young (2025) <doi:10.1080/03610918.2025.2464076>.
We provide a flexible Zero-inflated Poisson-Gamma Model (ZIPG) by connecting both the mean abundance and the variability to different covariates, and build valid statistical inference procedures for both parameter estimation and hypothesis testing. These functions can be used to analyze microbiome count data with zero-inflation and overdispersion. The model is discussed in Jiang et al (2023) <doi:10.1080/01621459.2022.2151447>.
This package provides MCMC algorithms for the analysis of zero-inflated count models. The case of stochastic search variable selection (SVS) is also considered. All MCMC samplers are coded in C++ for improved efficiency. A data set considering the demand for health care is provided.
This package provides functions to compute compositional turnover using zeta-diversity, the number of species shared by multiple assemblages. The package includes functions to compute zeta-diversity for a specific number of assemblages and to compute zeta-diversity for a range of numbers of assemblages. It also includes functions to explain how zeta-diversity varies with distance and with differences in environmental variables between assemblages, using generalised linear models, linear models with negative constraints, generalised additive models,shape constrained additive models, and I-splines.
R package accompanying the book Working with dynamic models for agriculture and environment, by Daniel Wallach (INRA), David Makowski (INRA), James W. Jones (U.of Florida), Francois Brun (ACTA). 3rd edition 2018-09-27.
This package provides tools for estimating Zero-Inflated INAR(1) (ZI-INAR(1)) and Hurdle INAR(1) (H-INAR(1)) models using Stan'. It allows users to simulate time series data for these models, estimate parameters, and evaluate model fit using various criteria. Functions include model estimation, simulation, and likelihood-based metrics.
Fetch statistics about views, downloads and data volume from Zenodo deposits. The package collects a Zenodo (<https://zenodo.org>) deposit file information, respecting the website scrapping policies.
Geneâ based association tests to model count data with excessive zeros and rare variants using zero-inflated Poisson/zero-inflated negative Binomial regression framework. This method was originally described by Fan, Sun, and Li in Genetic Epidemiology 46(1):73-86 <doi:10.1002/gepi.22438>.
Fits Dirichlet regression and zero-and-one inflated Dirichlet regression with Bayesian methods implemented in Stan. These models are sometimes referred to as trinomial mixture models; covariates and overdispersion can optionally be included.
The Zarr specification is widely used to build libraries for the storage and retrieval of n-dimensional array data from data stores ranging from local file systems to the cloud. This package is a native Zarr implementation in R with support for all required features of Zarr version 3. It is designed to be extensible such that new stores, codecs and extensions can be added easily.
Empowers users to fuzzily-merge data frames with millions or tens of millions of rows in minutes with low memory usage. The package uses the locality sensitive hashing algorithms developed by Datar, Immorlica, Indyk and Mirrokni (2004) <doi:10.1145/997817.997857>, and Broder (1998) <doi:10.1109/SEQUEN.1997.666900> to avoid having to compare every pair of records in each dataset, resulting in fuzzy-merges that finish in linear time.
This package implements Python-style zip for R. Is a more flexible version of cbind.
This function produces empirical best linier unbiased predictions (EBLUPs) for Zero-Inflated data and its Relative Standard Error. Small Area Estimation with Zero-Inflated Model (SAE-ZIP) is a model developed for Zero-Inflated data that can lead us to overdispersion situation. To handle this kind of situation, this model is created. The model in this package is based on Small Area Estimation with Zero-Inflated Poisson model proposed by Dian Christien Arisona (2018)<https://repository.ipb.ac.id/handle/123456789/92308>. For the data sample itself, we use combination method between Roberto Benavent and Domingo Morales (2015)<doi:10.1016/j.csda.2015.07.013> and Sabine Krieg, Harm Jan Boonstra and Marc Smeets (2016)<doi:10.1515/jos-2016-0051>.
This package provides a package containing an environment representing the ATH1-121501.CDF file.
ASSIGN is a computational tool to evaluate the pathway deregulation/activation status in individual patient samples. ASSIGN employs a flexible Bayesian factor analysis approach that adapts predetermined pathway signatures derived either from knowledge-based literature or from perturbation experiments to the cell-/tissue-specific pathway signatures. The deregulation/activation level of each context-specific pathway is quantified to a score, which represents the extent to which a patient sample encompasses the pathway deregulation/activation signature.
SonVariantsChr21 is a dataset of annotated genomic variants coming from Complete Genomics whole genome sequencing. Data comes from GIAB project, Ashkenazim Trio, sample HG002 run 1. Both vcf and annotated data frame are provided.
Save BumpyMatrix objects into file artifacts, and load them back into memory. This is a more portable alternative to serialization of such objects into RDS files. Each artifact is associated with metadata for further interpretation; downstream applications can enrich this metadata with context-specific properties.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was AG\_probe\_tab.
This package unifies access to Statistal Modeling of Omics Data. Across linear modeling engines (lm, lme, lmer, limma, and wilcoxon). Across coding systems (treatment, difference, deviation, etc). Across model formulae (with/without intercept, random effect, interaction or nesting). Across omics platforms (microarray, rnaseq, msproteomics, affinity proteomics, metabolomics). Across projection methods (pca, pls, sma, lda, spls, opls). Across clustering methods (hclust, pam, cmeans). Across survival methods (coxph, survdiff, coin). It provides a fast enrichment analysis implementation.
Supplies AnnotationHub with EnsDb Ensembl-based annotation databases for all species. EnsDb SQLite databases are generated separately from Ensembl MySQL databases using functions from the ensembldb package employing the Ensembl Perl API.