Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package creates the "table one" of bio-medical papers. Fill it with your data and the name of the variable which you'll make the group(s) out of and it will make univariate, bivariate analysis and parse it into HTML. It also allows you to visualize all your data with graphic representation.
The ts objects in R are managed using a very specific date format (in the form c(2022, 9) for September 2022 or c(2021, 2) for the second quarter of 2021, depending on the frequency, for example). We focus solely on monthly and quarterly series to manage the dates of ts objects. The general idea is to offer a set of functions to manage this date format without it being too restrictive or too imprecise depending on the rounding. This is a compromise between simplicity, precision and use of the basic stats functions for creating and managing time series (ts(), window()). Les objets ts en R sont gérés par un format de date très particulier (sous la forme c(2022, 9) pour septembre 2022 ou c(2021, 2) pour le deuxième trimestre 2021 selon la fréquence par exemple). On se concentre uniquement sur les séries mensuelles et trimestrielles pour gérer les dates des objets ts. Lidée générale est de proposer un ensemble de fonctions pour gérer ce format de date sans que ce soit trop contraignant ou trop imprécis selon les arrondis. Cest un compromis entre simplicité, précision et utilisation des fonctions du package stats de création et de gestion des séries temporelles (ts(), window()).
Dominance analysis is a method that allows to compare the relative importance of predictors in multiple regression models: ordinary least squares, generalized linear models, hierarchical linear models, beta regression and dynamic linear models. The main principles and methods of dominance analysis are described in Budescu, D. V. (1993) <doi:10.1037/0033-2909.114.3.542> and Azen, R., & Budescu, D. V. (2003) <doi:10.1037/1082-989X.8.2.129> for ordinary least squares regression. Subsequently, the extensions for multivariate regression, logistic regression and hierarchical linear models were described in Azen, R., & Budescu, D. V. (2006) <doi:10.3102/10769986031002157>, Azen, R., & Traxel, N. (2009) <doi:10.3102/1076998609332754> and Luo, W., & Azen, R. (2013) <doi:10.3102/1076998612458319>, respectively.
Supports import/export for a number of datetime string standards and R datetime classes often including lossless re-export of any original reduced precision including ISO 8601 <https://en.wikipedia.org/wiki/ISO_8601> and pdfmark <https://opensource.adobe.com/dc-acrobat-sdk-docs/library/pdfmark/> datetime strings. Supports local/global datetimes with optional UTC offsets and/or (possibly heterogeneous) time zones with up to nanosecond precision.
Gaussian mixture modeling of one- and two-dimensional data, provided in original or binned form, with an option to estimate the number of model components. The method uses Gaussian Mixture Models (GMM) with initial parameters determined by a dynamic programming algorithm, leading to stable and reproducible model fitting.
This package performs distance sampling simulations. dsims repeatedly generates instances of a user defined population within a given survey region. It then generates realisations of a survey design and simulates the detection process. The data are then analysed so that the results can be compared for accuracy and precision across all replications. This process allows users to optimise survey designs for their specific set of survey conditions. The effects of uncertainty in population distribution or parameters can be investigated under a number of simulations so that users can be confident that they have achieved a robust survey design before deploying vessels into the field. The distance sampling designs used in this package from dssd are detailed in Chapter 7 of Advanced Distance Sampling, Buckland et. al. (2008, ISBN-13: 978-0199225873). General distance sampling methods are detailed in Introduction to Distance Sampling: Estimating Abundance of Biological Populations, Buckland et. al. (2004, ISBN-13: 978-0198509271). Find out more about estimating animal/plant abundance with distance sampling at <https://distancesampling.org/>.
Efficiently create dummies of all factors and character vectors in a data frame. Support is included for learning the categories on one data set (e.g., a training set) and deploying them on another (e.g., a test set).
Efficiently creates, manipulates, and subsets "dist" objects, commonly used in cluster analysis. Designed to minimise unnecessary conversions and computational overhead while enabling seamless interaction with distance matrices.
This package provides a convenient API interface to access immunological data within the CAVD DataSpace'(<https://dataspace.cavd.org>), a data sharing and discovery tool that facilitates exploration of HIV immunological data from pre-clinical and clinical HIV vaccine studies.
Enhancing cross-language compatibility within the RStudio environment and supporting seamless language understanding, the deepRstudio package leverages the power of the DeepL API (see <https://www.deepl.com/docs-api>) to enable seamless, fast, accurate, and affordable translation of code comments, documents, and text. This package offers the ability to translate selected text into English (EN), as well as from English into various languages, namely Japanese (JA), Chinese (ZH), Spanish (ES), French (FR), Russian (RU), Portuguese (PT), and Indonesian (ID). With much of the text being written in English, the emphasis is on compatibility from English. It is also designed for developers working on multilingual projects and data analysts collaborating with international teams, simplifying the translation process and making code more accessible and comprehensible to people with diverse language backgrounds. This package uses the rstudioapi package and DeepL API, and is simply implemented, executed from addins or via shortcuts on RStudio'. With just a few steps, content can be translated between supported languages, promoting better collaboration and expanding the global reach of work. The functionality of this package works only on RStudio using rstudioapi'.
This package provides a parallel backend for the %dopar% function using the Rmpi package.
This package provides methods for analyzing the dispersion of tabular datasets with batched and ordered samples. Based on convex hull or integrated covariance Mahalanobis, several indicators are implemented for inter and intra batch dispersion analysis. It is designed to facilitate robust statistical assessment of data variability, supporting applications in exploratory data analysis and quality control, for such datasets as the one found in metabololomics studies. For more details see Salanon (2024) <doi:10.1016/j.chemolab.2024.105148> and Salanon (2025) <doi:10.1101/2025.08.01.668073>.
This package provides a high level API to interface over sources storing distance, dissimilarity, similarity matrices with matrix style extraction, replacement and other utilities. Currently, in-memory dist object backend is supported.
Probability generating function, formulae for the probabilities (discrete density) and random generation for discrete stable random variables.
Data cleaning scripts typically contain a lot of if this change that type of statements. Such statements are typically condensed expert knowledge. With this package, such data modifying rules are taken out of the code and become in stead parameters to the work flow. This allows one to maintain, document, and reason about data modification rules as separate entities.
Designed for network analysis, leveraging the personalized PageRank algorithm to calculate node scores in a given graph. This innovative approach allows users to uncover the importance of nodes based on a customized perspective, making it particularly useful in fields like bioinformatics, social network analysis, and more.
Simplifies and automates the process of exploring and merging data from relational databases. This package allows users to discover table relationships, create a map of all possible joins, and generate executable plans to merge data based on a structured metadata framework.
This package implements the algorithm described in Jun Li and Alicia T. Lamere, "DiPhiSeq: Robust comparison of expression levels on RNA-Seq data with large sample sizes" (Unpublished). Detects not only genes that show different average expressions ("differential expression", DE), but also genes that show different diversities of expressions in different groups ("differentially dispersed", DD). DD genes can be important clinical markers. DiPhiSeq uses a redescending penalty on the quasi-likelihood function, and thus has superior robustness against outliers and other noise. Updates from version 0.1.0: (1) Added the option of using adaptive initial value for phi. (2) Added a function for estimating the proportion of outliers in the data. (3) Modified the input parameter names for clarity, and modified the output format for the main function.
Robust distance-based methods applied to matrices and data frames, producing distance matrices that can be used as input for various visualization techniques such as graphs, heatmaps, or multidimensional scaling configurations. See Boj and Grané (2024) <doi:10.1016/j.seps.2024.101992>.
Leverages dplyr to process the calculations of a plot inside a database. This package provides helper functions that abstract the work at three levels: outputs a ggplot', outputs the calculations, outputs the formula needed to calculate bins.
An abstract DList class helps storing large list-type objects in a distributed manner. Corresponding high-level functions and methods for handling distributed storage (DStorage) and lists allows for processing such DLists on distributed systems efficiently. In doing so it uses a well defined storage backend implemented based on the DStorage class.
Base DataSHIELD functions for the client side. DataSHIELD is a software package which allows you to do non-disclosive federated analysis on sensitive data. DataSHIELD analytic functions have been designed to only share non disclosive summary statistics, with built in automated output checking based on statistical disclosure control. With data sites setting the threshold values for the automated output checks. For more details, see citation('dsBaseClient').
Solves ordinary and delay differential equations, where the objective function is written in either R or C. Suitable only for non-stiff equations, the solver uses a Dormand-Prince method that allows interpolation of the solution at any point. This approach is as described by Hairer, Norsett and Wanner (1993) <ISBN:3540604529>. Support is also included for iterating difference equations.
This package implements the Oaxaca-Blinder decomposition method and generalizations of it that decompose differences in distributional statistics beyond the mean. The function ob_decompose() decomposes differences in the mean outcome between two groups into one part explained by different covariates (composition effect) and into another part due to differences in the way covariates are linked to the outcome variable (structure effect). The function further divides the two effects into the contribution of each covariate and allows for weighted doubly robust decompositions. For distributional statistics beyond the mean, the function performs the recentered influence function (RIF) decomposition proposed by Firpo, Fortin, and Lemieux (2018). The function dfl_decompose() divides differences in distributional statistics into an composition effect and a structure effect using inverse probability weighting as introduced by DiNardo, Fortin, and Lemieux (1996). The function also allows to sequentially decompose the composition effect into the contribution of single covariates. References: Firpo, Sergio, Nicole M. Fortin, and Thomas Lemieux. (2018) <doi:10.3390/econometrics6020028>. "Decomposing Wage Distributions Using Recentered Influence Function Regressions." Fortin, Nicole M., Thomas Lemieux, and Sergio Firpo. (2011) <doi:10.3386/w16045>. "Decomposition Methods in Economics." DiNardo, John, Nicole M. Fortin, and Thomas Lemieux. (1996) <doi:10.2307/2171954>. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach." Oaxaca, Ronald. (1973) <doi:10.2307/2525981>. "Male-Female Wage Differentials in Urban Labor Markets." Blinder, Alan S. (1973) <doi:10.2307/144855>. "Wage Discrimination: Reduced Form and Structural Estimates.".