Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to fit two-dimensional Gaussian functions, predict values from fits, and produce plots of predicted data via either ggplot2 or base R plotting.
Some tools for developing general equilibrium models and some general equilibrium models. These models can be used for teaching economic theory and are built by the methods of new structural economics (see LI Wu, 2019, ISBN: 9787521804225, General Equilibrium and Structural Dynamics: Perspectives of New Structural Economics. Beijing: Economic Science Press). The model form and mathematical methods can be traced back to J. von Neumann (1945, A Model of General Economic Equilibrium. The Review of Economic Studies, 13. pp. 1-9), J. G. Kemeny, O. Morgenstern and G. L. Thompson (1956, A Generalization of the von Neumann Model of an Expanding Economy, Econometrica, 24, pp. 115-135) et al. By the way, J. G. Kemeny is a co-inventor of the computer language BASIC.
Mapping and spatial data manipulation tools - in particular drawing thematic maps with nice looking legends, and aggregation of point data to polygons.
Providing publication-ready graphs for Multiple sequence alignment. Moreover, it provides a unique solution for visualizing the multiple sequence alignment without the need to do the alignment in each run which is a big limitation in other available packages.
Using overlap grouped-lasso penalties, gamsel selects whether a term in a gam is nonzero, linear, or a non-linear spline (up to a specified max df per variable). It fits the entire regularization path on a grid of values for the overall penalty lambda, both for gaussian and binomial families. See <doi:10.48550/arXiv.1506.03850> for more details.
Fit a regression model for when the response variable is presented as a ratio or proportion. This adjustment can occur globally, with the same estimate for the entire study space, or locally, where a beta regression model is fitted for each region, considering only influential locations for that area. Da Silva, A. R. and Lima, A. O. (2017) <doi:10.1016/j.spasta.2017.07.011>.
Identifying disease-associated significant SNPs using clustering approach. This package is implementation of method proposed in Xu et al (2019) <DOI:10.1038/s41598-019-50229-6>.
This package performs variable selection in high-dimensional sparse GLARMA models. For further details we refer the reader to the paper Gomtsyan et al. (2020), <arXiv:2007.08623v1>.
This package performs binary classification via Group Method of Data Handling (GMDH) - type neural network algorithms. There exist two main algorithms available in GMDH() and dceGMDH() functions. GMDH() performs classification via GMDH algorithm for a binary response and returns important variables. dceGMDH() performs classification via diverse classifiers ensemble based on GMDH (dce-GMDH) algorithm. Also, the package produces a well-formatted table of descriptives for a binary response. Moreover, it produces confusion matrix, its related statistics and scatter plot (2D and 3D) with classification labels of binary classes to assess the prediction performance. All GMDH2 functions are designed for a binary response (Dag et al., 2019, <https://download.atlantis-press.com/article/125911202.pdf>).
This package provides a collection of functions for testing randomness (or mutual independence) in linear and circular data as proposed in Gehlot and Laha (2025a) <doi:10.48550/arXiv.2506.21157> and Gehlot and Laha (2025b) <doi:10.48550/arXiv.2506.23522>, respectively.
Generalized Turnbull's estimator proposed by Dehghan and Duchesne (2011).
This package contains all the data and functions used in Generalized Linear Models, 2nd edition, by Jeff Gill and Michelle Torres. Examples to create all models, tables, and plots are included for each data set.
These Rcpp'-based functions compute the efficient score statistics for grouped time-to-event data (Prentice and Gloeckler, 1978), with the optional inclusion of baseline covariates. Functions for estimating the parameter of interest and nuisance parameters, including baseline hazards, using maximum likelihood are also provided. A parallel set of functions allow for the incorporation of family structure of related individuals (e.g., trios). Note that the current implementation of the frailty model (Ripatti and Palmgren, 2000) is sensitive to departures from model assumptions, and should be considered experimental. For these data, the exact proportional-hazards-model-based likelihood is computed by evaluating multiple variable integration. The integration is accomplished using the Cuba library (Hahn, 2005), and the source files are included in this package. The maximization process is carried out using Brent's algorithm, with the C++ code file from John Burkardt and John Denker (Brent, 2002).
Make R scripts reproducible, by ensuring that every time a given script is run, the same version of the used packages are loaded (instead of whichever version the user running the script happens to have installed). This is achieved by using the command groundhog.library() instead of the base command library(), and including a date in the call. The date is used to call on the same version of the package every time (the most recent version available at that date). Load packages from CRAN, GitHub, or Gitlab.
This package provides helpers to add Git links to shiny applications, rmarkdown documents, and other HTML based resources. This is most commonly used for GitHub ribbons.
Read all commit messages of your local git repository and sort them according to tags or specific text pattern into chapters of a HTML book using bookdown'. The git history book presentation helps organisms required to testify for every changes in their source code, in relation to features requests.
Detecting spatial associations via spatial stratified heterogeneity, accounting for spatial dependencies, interpretability, complex interactions, and robust stratification. In addition, it supports the spatial stratified heterogeneity family described in Lv et al. (2025)<doi:10.1111/tgis.70032>.
This package performs Gamma regression, where both mean and shape parameters follows lineal regression structures.
An R interface to the Galvanize Highbond API <https://docs-apis.highbond.com>.
This package provides ggplot2 geoms that allow groups of data points to be outlined or highlighted for emphasis. This is particularly useful when working with dense datasets that are prone to overplotting.
This is a set of functions to retrieve information about GIMMS NDVI3g files currently available online; download (and re-arrange, in the case of NDVI3g.v0) the half-monthly data sets; import downloaded files from ENVI binary (NDVI3g.v0) or NetCDF format (NDVI3g.v1) directly into R based on the widespread raster package; conduct quality control; and generate monthly composites (e.g., maximum values) from the half-monthly input data. As a special gimmick, a method is included to conveniently apply the Mann-Kendall trend test upon Raster* images, optionally featuring trend-free pre-whitening to account for lag-1 autocorrelation.
Offers functions for the comparison of Gutenberg-Richter b-values. Several functions in GRTo are helpful for the assessment of the quality of seismicity catalogs.
This package performs linear regression with correlated predictors, responses and correlated measurement errors in predictors and responses, correcting for biased caused by these.
This package provides a collection of custom ggplot2'-based visualizations for data exploration and analysis. Each function handles data preprocessing and returns a object that can be further customized using standard ggplot2 syntax.