Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for fitting a Bayesian model for grouping binary dissimilarity matrices in homogeneous clusters. Currently, it includes methods only for binary data (<doi:10.18637/jss.v100.i16>).
This package performs parametric and non-parametric estimation and simulation of drifting semi-Markov processes. The definition of parametric and non-parametric model specifications is also possible. Furthermore, three different types of drifting semi-Markov models are considered. These models differ in the number of transition matrices and sojourn time distributions used for the computation of a number of semi-Markov kernels, which in turn characterize the drifting semi-Markov kernel. For the parametric model estimation and specification, several discrete distributions are considered for the sojourn times: Uniform, Poisson, Geometric, Discrete Weibull and Negative Binomial. The non-parametric model specification makes no assumptions about the shape of the sojourn time distributions. Semi-Markov models are described in: Barbu, V.S., Limnios, N. (2008) <doi:10.1007/978-0-387-73173-5>. Drifting Markov models are described in: Vergne, N. (2008) <doi:10.2202/1544-6115.1326>. Reliability indicators of Drifting Markov models are described in: Barbu, V. S., Vergne, N. (2019) <doi:10.1007/s11009-018-9682-8>. We acknowledge the DATALAB Project <https://lmrs-num.math.cnrs.fr/projet-datalab.html> (financed by the European Union with the European Regional Development fund (ERDF) and by the Normandy Region) and the HSMM-INCA Project (financed by the French Agence Nationale de la Recherche (ANR) under grant ANR-21-CE40-0005).
An implementation of the decimated two-dimensional complex dual-tree wavelet transform as described in Kingsbury (1999) <doi:10.1098/rsta.1999.0447> and Selesnick et al. (2005) <doi:10.1109/MSP.2005.1550194>. Also includes the undecimated version and spectral bias correction described in Nelson et al. (2018) <doi:10.1007/s11222-017-9784-0>. The code is partly based on the dtcwt Python library.
Distribution (S4-)classes for elliptically contoured distributions (based on package distr').
This package provides tools for temporal disaggregation, including: (1) High-dimensional and low-dimensional series generation for simulation studies; (2) A toolkit for temporal disaggregation and benchmarking using low-dimensional indicator series as proposed by Dagum and Cholette (2006, ISBN:978-0-387-35439-2); (3) Novel techniques by Mosley, Gibberd, and Eckley (2022, <doi:10.1111/rssa.12952>) for disaggregating low-frequency series in the presence of high-dimensional indicator matrices.
This package provides a suite of tools to help modelers and decision-makers effectively interpret and communicate decision risk when evaluating multiple policy options. It uses model outputs from uncertainty analysis for baseline scenarios and policy alternatives to generate visual representations of uncertainty and quantitative measures for assessing associated risks. For more details see Wiggins and colleagues (2025) <doi:10.1371/journal.pone.0332522> and <https://dut.ihe.ca/>.
Data cleaning scripts typically contain a lot of if this change that type of statements. Such statements are typically condensed expert knowledge. With this package, such data modifying rules are taken out of the code and become in stead parameters to the work flow. This allows one to maintain, document, and reason about data modification rules as separate entities.
The DoseFinding package provides functions for the design and analysis of dose-finding experiments (with focus on pharmaceutical Phase II clinical trials). It provides functions for: multiple contrast tests, fitting non-linear dose-response models (using Bayesian and non-Bayesian estimation), calculating optimal designs and an implementation of the MCPMod methodology (Pinheiro et al. (2014) <doi:10.1002/sim.6052>).
This package provides a shiny application that enables the user to create a prototype UI, being able to drag and drop UI components before being able to save or download the equivalent R code.
Computes the double bootstrap as discussed in McKnight, McKean, and Huitema (2000) <doi:10.1037/1082-989X.5.1.87>. The double bootstrap method provides a better fit for a linear model with autoregressive errors than ARIMA when the sample size is small.
An efficient and convenient set of functions to perform differential network estimation through the use of alternating direction method of multipliers optimization with a variety of loss functions.
You can retrieve Spotify API Information such as artists, albums, tracks, features tracks, recommendations or related artists. This package allows you to search all the information by name and also includes a distance based algorithm to find similar songs. More information: <https://developer.spotify.com/documentation/web-api/> .
The debar sequence processing pipeline is designed for denoising high throughput sequencing data for the animal DNA barcode marker cytochrome c oxidase I (COI). The package is designed to detect and correct insertion and deletion errors within sequencer outputs. This is accomplished through comparison of input sequences against a profile hidden Markov model (PHMM) using the Viterbi algorithm (for algorithm details see Durbin et al. 1998, ISBN: 9780521629713). Inserted base pairs are removed and deleted base pairs are accounted for through the introduction of a placeholder character. Since the PHMM is a probabilistic representation of the COI barcode, corrections are not always perfect. For this reason debar censors base pairs adjacent to reported indel sites, turning them into placeholder characters (default is 7 base pairs in either direction, this feature can be disabled). Testing has shown that this censorship results in the correct sequence length being restored, and erroneous base pairs being masked the vast majority of the time (>95%).
This package implements a flexible, versatile, and computationally tractable model for density regression based on a single-weights dependent Dirichlet process mixture of normal distributions model for univariate continuous responses. The model assumes an additive structure for the mean of each mixture component and the effects of continuous covariates are captured through smooth nonlinear functions. The key components of our modelling approach are penalised B-splines and their bivariate tensor product extension. The proposed method can also easily deal with parametric effects of categorical covariates, linear effects of continuous covariates, interactions between categorical and/or continuous covariates, varying coefficient terms, and random effects. Please see Rodriguez-Alvarez, Inacio et al. (2025) for more details.
Computes the ATM (Attractor Transition Matrix) structure and the tree-like structure describing the cell differentiation process (based on the Threshold Ergodic Set concept introduced by Serra and Villani), starting from the Boolean networks with synchronous updating scheme of the BoolNet R package. TESs (Threshold Ergodic Sets) are the mathematical abstractions that represent the different cell types arising during ontogenesis. TESs and the powerful model of biological differentiation based on Boolean networks to which it belongs have been firstly described in "A Dynamical Model of Genetic Networks for Cell Differentiation" Villani M, Barbieri A, Serra R (2011) A Dynamical Model of Genetic Networks for Cell Differentiation. PLOS ONE 6(3): e17703.
Low level functions for implementing maximum likelihood estimating procedures for complex models using data cloning and Bayesian Markov chain Monte Carlo methods as described in Solymos 2010 <doi:10.32614/RJ-2010-011>. Sequential and parallel MCMC support for JAGS', WinBUGS', OpenBUGS', and Stan'.
Package including an interactive Shiny application for plotting common univariate distributions.
Gives access to data visualisation methods that are relevant from the statistician's point of view. Using D3''s existing data visualisation tools to empower R language and environment. The throw chart method is a line chart used to illustrate paired data sets (such as before-after, male-female).
This package contains data organized by topics: categorical data, regression model, means comparisons, independent and repeated measures ANOVA, mixed ANOVA and ANCOVA.
This package provides a wrapper on top of the Domino Command-Line Client'. It lets you run Domino commands (e.g., "run", "upload", "download") directly from your R environment. Under the hood, it uses R's system function to run the Domino executable, which must be installed as a prerequisite. Domino is a service that makes it easy to run your code on scalable hardware, with integrated version control and collaboration features designed for analytical workflows (see <http://www.dominodatalab.com> for more information).
This package provides a function toolkit to facilitate reproducible RNA-Seq Differential Gene Expression (DGE) analysis (Law (2015) <doi:10.12688/f1000research.9005.3>). The tools include both analysis work-flow and utility functions: mapping/unit conversion, count normalization, accounting for unknown covariates, and more. This is a complement/cohort to the DGEobj package that provides a flexible container to manage and annotate Differential Gene Expression analysis results.
Fast, flexible and user-friendly tools for distribution comparison through direct density ratio estimation. The estimated density ratio can be used for covariate shift adjustment, outlier-detection, change-point detection, classification and evaluation of synthetic data quality. The package implements multiple non-parametric estimation techniques (unconstrained least-squares importance fitting, ulsif(), Kullback-Leibler importance estimation procedure, kliep(), spectral density ratio estimation, spectral(), kernel mean matching, kmm(), and least-squares hetero-distributional subspace search, lhss()). with automatic tuning of hyperparameters. Helper functions are available for two-sample testing and visualizing the density ratios. For an overview on density ratio estimation, see Sugiyama et al. (2012) <doi:10.1017/CBO9781139035613> for a general overview, and the help files for references on the specific estimation techniques.
Detection of differential item functioning (DIF) among dichotomously scored items and differential distractor functioning (DDF) among unscored items with non-linear regression procedures based on generalized logistic regression models (Hladka & Martinkova, 2020, <doi:10.32614/RJ-2020-014>).
This is the core package that provides both the user API and developer API to deploy the parallel cluster on the cloud using the container service. The user can call clusterPreset() to define the cloud service provider and container and makeDockerCluster() to create the cluster. The developer should see "developer's cookbook" on how to define the cloud provider and container.