Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computes regression deletion diagnostics for multivariate linear models and provides some associated diagnostic plots. The diagnostic measures include hat-values (leverages), generalized Cook's distance, and generalized squared studentized residuals. Several types of plots to detect influential observations are provided.
Set of utility functions to interact with WeMo Switch', a smart plug that can be remotely controlled via wifi. The provided functions make it possible to turn one or more WeMo Switch plugs on and off in a scriptable fashion. More information about WeMo Switch can be found at <http://www.belkin.com/us/p/P-F7C027/>.
This package provides functions for the robust estimation of parametric families of copulas using minimization of the Maximum Mean Discrepancy, following the article Alquier, Chérief-Abdellatif, Derumigny and Fermanian (2022) <doi:10.1080/01621459.2021.2024836>.
This package provides functions for fitting monotone polynomials to data. Detailed discussion of the methodologies used can be found in Murray, Mueller and Turlach (2013) <doi:10.1007/s00180-012-0390-5> and Murray, Mueller and Turlach (2016) <doi:10.1080/00949655.2016.1139582>.
Carries out model-based clustering, classification and discriminant analysis using five different models. The models are all based on the generalized hyperbolic distribution. The first model MGHD (Browne and McNicholas (2015) <doi:10.1002/cjs.11246>) is the classical mixture of generalized hyperbolic distributions. The MGHFA (Tortora et al. (2016) <doi:10.1007/s11634-015-0204-z>) is the mixture of generalized hyperbolic factor analyzers for high dimensional data sets. The MSGHD is the mixture of multiple scaled generalized hyperbolic distributions, the cMSGHD is a MSGHD with convex contour plots and the MCGHD', mixture of coalesced generalized hyperbolic distributions is a new more flexible model (Tortora et al. (2019)<doi:10.1007/s00357-019-09319-3>. The paper related to the software can be found at <doi:10.18637/jss.v098.i03>.
This package provides tools for the analysis of population differences using the Major Histocompatibility Complex (MHC) genotypes of samples having a variable number of alleles (1-4) recorded for each individual. A hierarchical Dirichlet-Multinomial model on the genotype counts is used to pool small samples from multiple populations for pairwise tests of equality. Bayesian inference is implemented via the rstan package. Bootstrapped and posterior p-values are provided for chi-squared and likelihood ratio tests of equal genotype probabilities.
Multi Calculator of different scores to measure adherence to Mediterranean Diet, to compute them in nutriepidemiological data. Additionally, a sample dataset of this kind of data is provided, and some other minor tools useful in epidemiological studies.
This package provides a system for Analysis of RBD when there is one missing observation. Methods for this process is described in A.M.Gun,M.K.Gupta,B.Dasgupta(2019,ISBN:81-87567-81-3).
Datasets and functions for the book "Modélisation statistique par la pratique avec R", F. Bertrand, E. Claeys and M. Maumy-Bertrand (2019, ISBN:9782100793525, Dunod, Paris). The first chapter of the book is dedicated to an introduction to the R statistical software. The second chapter deals with correlation analysis: Pearson, Spearman and Kendall simple, multiple and partial correlation coefficients. New wrapper functions for permutation tests or bootstrap of matrices of correlation are provided with the package. The third chapter is dedicated to data exploration with factorial analyses (PCA, CA, MCA, MDA) and clustering. The fourth chapter is dedicated to regression analysis: fitting and model diagnostics are detailed. The exercises focus on covariance analysis, logistic regression, Poisson regression, two-way analysis of variance for fixed or random factors. Various example datasets are shipped with the package: for instance on pokemon, world of warcraft, house tasks or food nutrition analyses.
This package provides a framework for multiple imputation for proteomics is proposed by Marie Chion, Christine Carapito and Frederic Bertrand (2021) <doi:10.1371/journal.pcbi.1010420>. It is dedicated to dealing with multiple imputation for proteomics.
This package provides new functions info(), warn() and error(), similar to message(), warning() and stop() respectively. However, the new functions can have a level associated with them, so that when executed the global level option determines whether they are shown or not. This allows debug modes, outputting more information. The can also output all messages to a log file.
This package provides a framework for multiple hypothesis testing based on distribution of p values. It is well known that the p values come from different distribution for null and alternatives, in this package we provide functions to detect that change. We provide a method for using the change in distribution of p values as a way to detect the true signals in the data.
This package provides a collection of matrix functions for teaching and learning matrix linear algebra as used in multivariate statistical methods. Many of these functions are designed for tutorial purposes in learning matrix algebra ideas using R. In some cases, functions are provided for concepts available elsewhere in R, but where the function call or name is not obvious. In other cases, functions are provided to show or demonstrate an algorithm. In addition, a collection of functions are provided for drawing vector diagrams in 2D and 3D and for rendering matrix expressions and equations in LaTeX.
Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in "Statistical Inference via Data Science: A ModernDive into R and the Tidyverse" available at <https://moderndive.com/>.
It finds Orthogonal Data Projections with Maximal Skewness. The first data projection in the output is the most skewed among all linear data projections. The second data projection in the output is the most skewed among all data projections orthogonal to the first one, and so on.
This package provides probability mass, distribution, quantile, random variate generation, and method-of-moments parameter fitting for the MBBEFD family of distributions used in insurance modeling as described in Bernegger (1997) <doi:10.2143/AST.27.1.563208> without any external dependencies.
An open-source implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods including low dimensional embedding, classical multivariate statistical tools, and tools for enhanced interpretation of machine learning methods (i.e. intelligible models to provide important information for end-users). Target domains include extension to dedicated applications e.g. for manufacturing process modeling, spectroscopic analyses, and data mining.
This package provides an interface to MetaPost (Hobby, 1998) <http://www.tug.org/docs/metapost/mpman.pdf>. There are functions to generate an R description of a MetaPost curve, functions to generate MetaPost code from an R description, functions to process MetaPost code, and functions to read solved MetaPost paths back into R.
Extend the functionality of the mclust package for Gaussian finite mixture modeling by including: density estimation for data with bounded support (Scrucca, 2019 <doi:10.1002/bimj.201800174>); modal clustering using MEM (Modal EM) algorithm for Gaussian mixtures (Scrucca, 2021 <doi:10.1002/sam.11527>); entropy estimation via Gaussian mixture modeling (Robin & Scrucca, 2023 <doi:10.1016/j.csda.2022.107582>); Gaussian mixtures modeling of financial log-returns (Scrucca, 2024 <doi:10.3390/e26110907>).
Diagnostic tools as residual analysis, global, local and total-local influence for the multivariate model from the random intercept Poisson generalized log gamma model are available in this package. Including also, the estimation process by maximum likelihood method, for details see Fabio, L. C; Villegas, C. L.; Carrasco, J.M.F and de Castro, M. (2023) <doi:10.1080/03610926.2021.1939380> and Fábio, L. C.; Villegas, C.; Mamun, A. S. M. A. and Carrasco, J. M. F. (2025) <doi:10.28951/bjb.v43i1.728>.
This package provides functions for calculating the point and interval estimates of the natural indirect effect (NIE), total effect (TE), and mediation proportion (MP), based on the product approach. We perform the methods considered in Cheng, Spiegelman, and Li (2021) Estimating the natural indirect effect and the mediation proportion via the product method.
Estimates the multi-level vector autoregression model on time-series data. Three network structures are obtained: temporal networks, contemporaneous networks and between-subjects networks.
This package provides utilities for reading and processing microdata from Spanish official statistics with R.
Generalized Egger tests for detecting publication bias in meta-analysis for diagnostic accuracy test (Noma (2020) <doi:10.1111/biom.13343>, Noma (2022) <doi:10.48550/arXiv.2209.07270>). These publication bias tests are generally more powerful compared with the conventional univariate publication bias tests and can incorporate correlation information between the outcome variables.