Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We introduce a high-dimensional multi-study robust factor model, which learns latent features and accounts for the heterogeneity among source. It could be used for analyzing heterogeneous RNA sequencing data. More details can be referred to Jiang et al. (2025) <doi:10.48550/arXiv.2506.18478>.
Designing multi-arm multi-stage studies with (asymptotically) normal endpoints and known variance.
Multivariate Adaptive Regression Spline (MARS) based Artificial Neural Network (ANN) hybrid model is combined Machine learning hybrid approach which selects important variables using MARS and then fits ANN on the extracted important variables.
An R interface to the MinIO Client. The MinIO Client ('mc') provides a modern alternative to UNIX commands like ls', cat', cp', mirror', diff', find etc. It supports filesystems and Amazon "S3" compatible cloud storage service ("AWS" Signature v2 and v4). This package provides convenience functions for installing the MinIO client and running any operations, as described in the official documentation, <https://min.io/docs/minio/linux/reference/minio-mc.html?ref=docs-redirect>. This package provides a flexible and high-performance alternative to aws.s3'.
This package provides methods to analyze micro-randomized trials (MRTs) with binary treatment options. Supports four types of analyses: (1) proximal causal excursion effects, including weighted and centered least squares (WCLS) for continuous proximal outcomes by Boruvka et al. (2018) <doi:10.1080/01621459.2017.1305274> and the estimator for marginal excursion effect (EMEE) for binary proximal outcomes by Qian et al. (2021) <doi:10.1093/biomet/asaa070>; (2) distal causal excursion effects (DCEE) for continuous distal outcomes using a two-stage estimator by Qian (2025) <doi:10.1093/biomtc/ujaf134>; (3) mediated causal excursion effects (MCEE) for continuous distal outcomes, estimating natural direct and indirect excursion effects in the presence of time-varying mediators by Qian (2025) <doi:10.48550/arXiv.2506.20027>; and (4) standardized proximal effect size estimation for continuous proximal outcomes, generalizing the approach in Luers et al. (2019) <doi:10.1007/s11121-017-0862-5> to allow adjustment for baseline and time-varying covariates for improved efficiency.
An implementation of multiple maps t-distributed stochastic neighbor embedding (t-SNE). Multiple maps t-SNE is a method for projecting high-dimensional data into several low-dimensional maps such that non-metric space properties are better preserved than they would be by a single map. Multiple maps t-SNE with only one map is equivalent to standard t-SNE. When projecting onto more than one map, multiple maps t-SNE estimates a set of latent weights that allow each point to contribute to one or more maps depending on similarity relationships in the original data. This implementation is a port of the original Matlab library by Laurens van der Maaten. See Van der Maaten and Hinton (2012) <doi:10.1007/s10994-011-5273-4>. This material is based upon work supported by the United States Air Force and Defense Advanced Research Project Agency (DARPA) under Contract No. FA8750-17-C-0020. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force and Defense Advanced Research Projects Agency. Distribution Statement A: Approved for Public Release; Distribution Unlimited.
This package provides methods for color labeling, calculation of eigengenes, merging of closely related modules.
It performs the followings Multivariate Process Capability Indices: Shahriari et al. (1995) Multivariate Capability Vector, Taam et al. (1993) Multivariate Capability Index (MCpm), Pan and Lee (2010) proposal (NMCpm) and the followings based on Principal Component Analysis (PCA):Wang and Chen (1998), Xekalaki and Perakis (2002) and Wang (2005). Two datasets are included.
Implement meta-analyses for simultaneously estimating individual means with shrinkage, isotonic regression and pretests. Include our original implementation of the isotonic regression via the pool-adjacent-violators algorithm (PAVA) algorithm. For the pretest estimator, the confidence interval for individual means are provided. Methodologies were published in Taketomi et al. (2021) <doi:10.3390/axioms10040267>, Taketomi et al. (2022) <doi:10.3390/a15010026>, Taketomi et al. (2023-) (under review).
Datasets and wrapper functions for tidyverse-friendly introductory linear regression, used in "Statistical Inference via Data Science: A ModernDive into R and the Tidyverse" available at <https://moderndive.com/>.
This group of functions simplifies the creation of linked micromap plots. Please see <https://www.jstatsoft.org/v63/i02/> for additional details.
Fits probabilistic principal components analysis, probabilistic principal components and covariates analysis and mixtures of probabilistic principal components models to metabolomic spectral data.
This package provides methods for quantifying the information gain contributed by individual modalities in multimodal regression models. Information gain is measured using Expected Relative Entropy (ERE) or pseudo-R² metrics, with corresponding p-values and confidence intervals. Currently supports linear and logistic regression models with plans for extension to additional Generalized Linear Models and Cox proportional hazard model.
Calculate the financial impact of using a churn model in terms of cost, revenue, profit and return on investment.
The effects of the site may severely bias the accuracy of a multisite machine-learning model, even if the analysts removed them when fitting the model in the training set and applying the model in the test set (Solanes et al., Neuroimage 2023, 265:119800). This simple R package estimates the accuracy of a multisite machine-learning model unbiasedly, as described in (Solanes et al., Psychiatry Research: Neuroimaging 2021, 314:111313). It currently supports the estimation of sensitivity, specificity, balanced accuracy (for binary or multinomial variables), the area under the curve, correlation, mean squarer error, and hazard ratio for binomial, multinomial, gaussian, and survival (time-to-event) outcomes.
Various tools for the analysis of univariate, multivariate and functional extremes. Exact simulation from max-stable processes (Dombry, Engelke and Oesting, 2016, <doi:10.1093/biomet/asw008>, R-Pareto processes for various parametric models, including Brown-Resnick (Wadsworth and Tawn, 2014, <doi:10.1093/biomet/ast042>) and Extremal Student (Thibaud and Opitz, 2015, <doi:10.1093/biomet/asv045>). Threshold selection methods, including Wadsworth (2016) <doi:10.1080/00401706.2014.998345>, and Northrop and Coleman (2014) <doi:10.1007/s10687-014-0183-z>. Multivariate extreme diagnostics. Estimation and likelihoods for univariate extremes, e.g., Coles (2001) <doi:10.1007/978-1-4471-3675-0>.
Data sets and scripts for Modeling Psychophysical Data in R (Springer).
Local linear estimation of psychometric functions. Provides functions for nonparametric estimation of a psychometric function and for estimation of a derived threshold and slope, and their standard deviations and confidence intervals.For more details see Zychaluk and Foster (2009) <doi:10.3758/APP.71.6.1414> and Foster and Zychaluk (2007) <doi:10.1109/MSP.2007.4286564>.
Perform the model confidence set procedure of Hansen et al (2011) <doi:10.3982/ECTA5771>.
Fit Maximum Entropy Optimality Theory models to data sets, generate the predictions made by such models for novel data, and compare the fit of different models using a variety of metrics. The package is described in Mayer, C., Tan, A., Zuraw, K. (in press) <https://sites.socsci.uci.edu/~cjmayer/papers/cmayer_et_al_maxent_ot_accepted.pdf>.
Fit mixture of Markov chains of higher orders from multiple sequences. It is also compatible with ordinary 1-component, 1-order or single-sequence Markov chains. Various utility functions are provided to derive transition patterns, transition probabilities per component and component priors. In addition, print(), predict() and component extracting/replacing methods are also defined as a convention of mixture models.
This package provides functions for comparing survival curves using the max-combo test at a single timepoint or repeatedly at successive respective timepoints while controlling type I error (i.e., the group sequential setting), as published by Prior (2020) <doi:10.1177/0962280220931560>. The max-combo test is a generalization of the weighted log-rank test, which itself is a generalization of the log-rank test, which is a commonly used statistical test for comparing survival curves, e.g., during or after a clinical trial as part of an effort to determine if a new drug or therapy is more effective at delaying undesirable outcomes than an established drug or therapy or a placebo.
Perform multivariate modeling of evolved traits, with special attention to understanding the interplay of the multi-factorial determinants of their origins in complex ecological settings (Stephens, 2007 <doi:10.1016/j.tree.2006.12.003>). This software primarily concentrates on phylogenetic regression analysis, enabling implementation of tree transformation averaging and visualization functionality. Functions additionally support information theoretic approaches (Grueber, 2011 <doi:10.1111/j.1420-9101.2010.02210.x>; Garamszegi, 2011 <doi:10.1007/s00265-010-1028-7>) such as model averaging and selection of phylogenetic models. Accessory functions are also implemented for coef standardization (Cade 2015), selection uncertainty, and variable importance (Burnham & Anderson 2000). There are other numerous functions for visualizing confounded variables, plotting phylogenetic trees, as well as reporting and exporting modeling results. Lastly, as challenges to ecology are inherently multifarious, and therefore often multi-dataset, this package features several functions to support the identification, interpolation, merging, and updating of missing data and outdated nomenclature.
Algorithms compute robust estimators for loss functions in the concave convex (CC) family by the iteratively reweighted convex optimization (IRCO), an extension of the iteratively reweighted least squares (IRLS). The IRCO reduces the weight of the observation that leads to a large loss; it also provides weights to help identify outliers. Applications include robust (penalized) generalized linear models and robust support vector machines. The package also contains penalized Poisson, negative binomial, zero-inflated Poisson, zero-inflated negative binomial regression models and robust models with non-convex loss functions. Wang et al. (2014) <doi:10.1002/sim.6314>, Wang et al. (2015) <doi:10.1002/bimj.201400143>, Wang et al. (2016) <doi:10.1177/0962280214530608>, Wang (2021) <doi:10.1007/s11749-021-00770-2>, Wang (2024) <doi:10.1111/anzs.12409>.