Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a three-step procedure in the spirit of Leffondre et al. (2004) to identify clusters of individual longitudinal trajectories. The procedure involves (1) computing a number of "measures of change" capturing various features of the trajectories; (2) using a Principal Component Analysis based dimension reduction algorithm to select a subset of measures and (3) using the k-medoids or k-means algorithm to identify clusters of trajectories.
Table 1 is the classical way to describe the patients in a clinical study. The amount of splits in the data in such a table is limited. Table1Heatmap draws a heatmap of all crosstables that can be generated with the data. Users can choose between showing the actual crosstables or direction of effect of associations, and highlight associations by number of patients or p-values. v1.2 - fixed "missing "no visible global function definition for ..".
Visualizing cuts for either axis-align or non axis-align tree methods (e.g. decision tree, random tessellation process).
Assists in the TOPSIS analysis process, designed to return at the end of the answer of the TOPSIS multicriteria analysis, a ranking table with the best option as the analysis proposes. TOPSIS is basically a technique developed by Hwang and Yoon in 1981, starting from the point that the best alternative should be closest to the positive ideal solution and farthest from the negative one, based on several criteria to result in the best benefit. (LIU, H. et al., 2019) <doi:10.1016/j.agwat.2019.105787>.
Computes the t* statistic corresponding to the tau* population coefficient introduced by Bergsma and Dassios (2014) <DOI:10.3150/13-BEJ514> and does so in O(n^2) time following the algorithm of Heller and Heller (2016) <DOI:10.48550/arXiv.1605.08732> building off of the work of Weihs, Drton, and Leung (2016) <DOI:10.1007/s00180-015-0639-x>. Also allows for independence testing using the asymptotic distribution of t* as described by Nandy, Weihs, and Drton (2016) <DOI:10.1214/16-EJS1166>.
This package provides a music notation syntax and a collection of music programming functions for generating, manipulating, organizing, and analyzing musical information in R. Music syntax can be entered directly in character strings, for example to quickly transcribe short pieces of music. The package contains functions for directly performing various mathematical, logical and organizational operations and musical transformations on special object classes that facilitate working with music data and notation. The same music data can be organized in tidy data frames for a familiar and powerful approach to the analysis of large amounts of structured music data. Functions are available for mapping seamlessly between these formats and their representations of musical information. The package also provides an API to LilyPond (<https://lilypond.org/>) for transcribing musical representations in R into tablature ("tabs") and sheet music. LilyPond is open source music engraving software for generating high quality sheet music based on markup syntax. The package generates LilyPond files from R code and can pass them to the LilyPond command line interface to be rendered into sheet music PDF files or inserted into R markdown documents. The package offers nominal MIDI file output support in conjunction with rendering sheet music. The package can read MIDI files and attempts to structure the MIDI data to integrate as best as possible with the data structures and functionality found throughout the package.
This package provides the estimation of a time-dependent covariance matrix of returns with the intended use for portfolio optimization. The package offers methods for determining the optimal number of factors to be used in the covariance estimation, a hypothesis test of time-varying covariance, and user-friendly functions for portfolio optimization and rolling window evaluation. The local PCA method, method for determining the number of factors, and associated hypothesis test are based on Su and Wang (2017) <doi:10.1016/j.jeconom.2016.12.004>. The approach to time-varying portfolio optimization follows Fan et al. (2024) <doi:10.1016/j.jeconom.2022.08.007>. The regularisation applied to the residual covariance matrix adopts the technique introduced by Chen et al. (2019) <doi:10.1016/j.jeconom.2019.04.025>.
BEAST2 (<https://www.beast2.org>) is a widely used Bayesian phylogenetic tool, that uses DNA/RNA/protein data and many model priors to create a posterior of jointly estimated phylogenies and parameters. Tracer (<https://github.com/beast-dev/tracer/>) is a GUI tool to parse and analyze the files generated by BEAST2'. This package provides a way to parse and analyze BEAST2 input files without active user input, but using R function calls instead.
This package provides tidyverse methods for wrangling and analyzing Earth Engine <https://earthengine.google.com/> data. These methods help the user with filtering, joining and summarising Earth Engine image collections.
This package provides a latent, quasi-independent truncation time is assumed to be linked with the observed dependent truncation time, the event time, and an unknown transformation parameter via a structural transformation model. The transformation parameter is chosen to minimize the conditional Kendall's tau (Martin and Betensky, 2005) <doi:10.1198/016214504000001538> or the regression coefficient estimates (Jones and Crowley, 1992) <doi:10.2307/2336782>. The marginal distribution for the truncation time and the event time are completely left unspecified. The methodology is applied to survival curve estimation and regression analysis.
Gene and exon information from Ensembl genome builds GRCh38.p13 (104) and GRCh37 (v40) to use with the topr package.
Transformer is a Deep Neural Network Architecture based i.a. on the Attention mechanism (Vaswani et al. (2017) <doi:10.48550/arXiv.1706.03762>).
Consolidates and calculates different sets of time-series features from multiple R and Python packages including Rcatch22 Henderson, T. (2021) <doi:10.5281/zenodo.5546815>, feasts O'Hara-Wild, M., Hyndman, R., and Wang, E. (2021) <https://CRAN.R-project.org/package=feasts>, tsfeatures Hyndman, R., Kang, Y., Montero-Manso, P., Talagala, T., Wang, E., Yang, Y., and O'Hara-Wild, M. (2020) <https://CRAN.R-project.org/package=tsfeatures>, tsfresh Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr A.W. (2018) <doi:10.1016/j.neucom.2018.03.067>, TSFEL Barandas, M., et al. (2020) <doi:10.1016/j.softx.2020.100456>, and Kats Facebook Infrastructure Data Science (2021) <https://facebookresearch.github.io/Kats/>.
Fit a trio model via penalized maximum likelihood. The model is fit for a path of values of the penalty parameter. This package is based on Noah Simon, et al. (2011) <doi:10.1080/10618600.2012.681250>.
This package provides a toolkit implementing the Matrix Profile concept that was created by CS-UCR <http://www.cs.ucr.edu/~eamonn/MatrixProfile.html>.
This package provides a specialization of dplyr data manipulation verbs that parse and build expressions which are ultimately evaluated by data.table', letting it handle all optimizations. A set of additional verbs is also provided to facilitate some common operations on a subset of the data.
Takes objects of class edsurvey.data.frame and converts them to a data.frame within the calling environment of dplyr and ggplot2 functions. Additionally, for plotting with ggplot2', users can map aesthetics to subject scales and all plausible values will be used. This package supports student level data; to work with school or teacher level data, see ?EdSurvey::getData'.
An implementation of tidy speaker vowel normalization. This includes generic functions for defining new normalization methods for points, formant tracks, and Discrete Cosine Transform coefficients, as well as convenience functions implementing established normalization methods. References for the implemented methods are: Johnson, Keith (2020) <doi:10.5334/labphon.196> Lobanov, Boris (1971) <doi:10.1121/1.1912396> Nearey, Terrance M. (1978) <https://sites.ualberta.ca/~tnearey/Nearey1978_compressed.pdf> Syrdal, Ann K., and Gopal, H. S. (1986) <doi:10.1121/1.393381> Watt, Dominic, and Fabricius, Anne (2002) <https://www.latl.leeds.ac.uk/article/evaluation-of-a-technique-for-improving-the-mapping-of-multiple-speakers-vowel-spaces-in-the-f1-f2-plane/>.
An implementation of a boosted Tweedie compound Poisson model proposed by Yang, Y., Qian, W. and Zou, H. (2018) <doi:10.1080/07350015.2016.1200981>. It is capable of fitting a flexible nonlinear Tweedie compound Poisson model (or a gamma model) and capturing high-order interactions among predictors. This package is based on the gbm package originally developed by Greg Ridgeway.
Implementation of Time to Target plot based on the work of Ribeiro and Rosseti (2015) <DOI:10.1007/s11590-014-0760-8>, that describe a numerical method that gives the probability of an algorithm A finds a solution at least as good as a given target value in smaller computation time than algorithm B.
This package provides a suite of functions for visualising ternary probabilistic forecasts, as discussed in the paper by Jupp (2012) <doi:10.1098/rsta.2011.0350>.
Converting text to numerical features requires specifically created procedures, which are implemented as steps according to the recipes package. These steps allows for tokenization, filtering, counting (tf and tfidf) and feature hashing.
Perform two types of analysis: 1) checking the goodness-of-fit of tree models to your single-cell gene expression data; and 2) deciding which tree best fits your data.
Use the <https://toggl.com> time tracker api through R.