Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows the user to view an image in full screen when clicking on it in RMarkdown documents and shiny applications. The package relies on the JavaScript library intense-images'. See <https://tholman.com/intense-images/> for more information.
Helps to prepare a release. Before releasing an R package it is important to update the DESCRIPTION file and the changelog. This package prepares these files and also updates the versions according to the branches. It relies heavily on the desc packages.
DBI/RJDBC interface to h2 database. h2 version 2.3.232 is included.
Extends R Commander with a unified menu of new and pre-existing statistical functions related to public management and policy analysis statistics. Functions and menus have been renamed according to the usage in PMGT 630 in the Master of Public Administration program at Brigham Young University.
R tools to measure and compare inequality, welfare and poverty using the EU statistics on income and living conditions surveys.
This package provides a collection of personal functions designed to simplify and streamline common R programming tasks. This package provides reusable tools and shortcuts for frequently used calculations and workflows.
This package provides a toolset for 3D reconstruction and analysis of excavations. It provides methods to reconstruct natural and artificial surfaces based on field measurements. This allows to spatially contextualize documented subunits and features. Intended to be part of a 3D visualization workflow.
Plot regression surfaces and marginal effects in three dimensions. The plots are plotly objects and can be customized using functions and arguments from the plotly package.
Data with irregular spatial support, such as runoff related data or data from administrative units, can with rtop be interpolated to locations without observations with the top-kriging method. A description of the package is given by Skøien et al (2014) <doi:10.1016/j.cageo.2014.02.009>.
This package provides functions to query (filter or transform), pivot (convert from array-of-objects to object-of-arrays, for easy import as R data frame), search, patch (edit), and validate (against JSON Schema') JSON and NDJSON strings, files, or URLs. Query and pivot support JSONpointer', JSONpath or JMESpath expressions. The implementation uses the jsoncons <https://danielaparker.github.io/jsoncons/> header-only library; the library is easily linked to other packages for direct access to C++ functionality not implemented here.
This package provides tools for the analysis of reverse-phase protein arrays (RPPAs), which are also known as tissue lysate arrays or simply lysate arrays'. The package's primary purpose is to input a set of quantification files representing dilution series of samples and control points taken from scanned RPPA slides and determine a relative log concentration value for each valid dilution series present in each slide and provide graphical visualization of the input and output data and their relationships. Other optional features include generation of quality control scores for judging the quality of the input data, spatial adjustment of sample points based on controls added to the slides, and various types of normalization of calculated values across a set of slides. The package was derived from a previous package named SuperCurve. For a detailed description of data inputs and outputs, usage information, and a list of related papers describing methods used in the package please review the vignette Guide_to_RPPASPACE'. RPPA SPACE: an R package for normalization and quantitation of Reverse-Phase Protein Array data'. Bioinformatics Nov 15;38(22):5131-5133. <doi: 10.1093/bioinformatics/btac665>.
This package contains three functions that query AuriQ Systems Essentia Database and return the results in R. essQuery takes a single Essentia command and captures the output in R, where you can save the output to a dataframe or stream it directly into additional analysis. read.essentia takes an Essentia script and captures the output csv data into R, where you can save the output to a dataframe or stream it directly into additional analysis. capture.essentia takes a file containing any number of Essentia commands and captures the output of the specified statements into R dataframes. Essentia can be downloaded for free at http://www.auriq.com/documentation/source/install/index.html.
The minimum covariance determinant estimator is used to perform robust quadratic discriminant analysis, including cross-validation. References: Friedman J., Hastie T. and Tibshirani R. (2009). "The elements of statistical learning", 2nd edition. Springer, Berlin. <doi:10.1007/978-0-387-84858-7>.
In silico experimental evolution offers a cost-and-time effective means to test evolutionary hypotheses. Existing evolutionary simulation tools focus on simulations in a limited experimental framework, and tend to report on only the results presumed of interest by the tools designer. The R-package for Simulated Haploid Asexual Population Evolution ('rSHAPE') addresses these concerns by implementing a robust simulation framework that outputs complete population demographic and genomic information for in silico evolving communities. Allowing more than 60 parameters to be specified, rSHAPE' simulates evolution across discrete time-steps for an evolving community of haploid asexual populations with binary state genomes. These settings are for the current state of rSHAPE and future steps will be to increase the breadth of evolutionary conditions permitted. At present, most effort was placed into permitting varied growth models to be simulated (such as constant size, exponential growth, and logistic growth) as well as various fitness landscape models to reflect the evolutionary landscape (e.g.: Additive, House of Cards - Stuart Kauffman and Simon Levin (1987) <doi:10.1016/S0022-5193(87)80029-2>, NK - Stuart A. Kauffman and Edward D. Weinberger (1989) <doi:10.1016/S0022-5193(89)80019-0>, Rough Mount Fuji - Neidhart, Johannes and Szendro, Ivan G and Krug, Joachim (2014) <doi:10.1534/genetics.114.167668>). This package includes numerous functions though users will only need defineSHAPE(), runSHAPE(), shapeExperiment() and summariseExperiment(). All other functions are called by these main functions and are likely only to be on interest for someone wishing to develop rSHAPE'. Simulation results will be stored in files which are exported to the directory referenced by the shape_workDir option (defaults to tempdir() but do change this by passing a folderpath argument for workDir when calling defineSHAPE() if you plan to make use of your results beyond your current session). rSHAPE will generate numerous replicate simulations for your defined range of experimental parameters. The experiment will be built under the experimental working directory (i.e.: referenced by the option shape_workDir set using defineSHAPE() ) where individual replicate simulation results will be stored as well as processed results which I have made in an effort to facilitate analyses by automating collection and processing of the potentially thousands of files which will be created. On that note, rSHAPE implements a robust and flexible framework with highly detailed output at the cost of computational efficiency and potentially requiring significant disk space (generally gigabytes but up to tera-bytes for very large simulation efforts). So, while rSHAPE offers a single framework in which we can simulate evolution and directly compare the impacts of a wide range of parameters, it is not as quick to run as other in silico simulation tools which focus on a single scenario with limited output. There you have it, rSHAPE offers you a less restrictive in silico evolutionary playground than other tools and I hope you enjoy testing your hypotheses.
This package provides typed parameter documentation tags for integration with roxygen2'. Typed parameter tags provide a consistent interface for annotating expected types for parameters and returned values. Tools for converting from existing styles are also provided to easily adapt projects which implement typed documentation by convention rather than tag. Use the default format or provide your own.
This package provides the robust gamma rank correlation coefficient as introduced by Bodenhofer, Krone, and Klawonn (2013) <DOI:10.1016/j.ins.2012.11.026> along with a permutation-based rank correlation test. The rank correlation coefficient and the test are explicitly designed for dealing with noisy numerical data.
R functions for the computation of the truncated maximum likelihood and the robust accelerated failure time regression for gaussian and log-Weibull case.
Automatic open data acquisition from resources of Polish Head Office of Geodesy and Cartography ('GŠówny UrzÄ d Geodezji i Kartografii') (<https://www.gov.pl/web/gugik>). Available datasets include various types of numeric, raster and vector data, such as orthophotomaps, digital elevation models (digital terrain models, digital surface model, point clouds), state register of borders, spatial databases, geometries of cadastral parcels, 3D models of buildings, and more. It is also possible to geocode addresses or objects using the geocodePL_get() function.
This package provides functions from the book "Reinsurance: Actuarial and Statistical Aspects" (2017) by Hansjoerg Albrecher, Jan Beirlant and Jef Teugels <https://www.wiley.com/en-us/Reinsurance%3A+Actuarial+and+Statistical+Aspects-p-9780470772683>.
Reads, writes and validates mzQC files. The mzQC format is a standardized file format for the exchange, transmission, and archiving of quality metrics derived from biological mass spectrometry data, as defined by the HUPO-PSI (Human Proteome Organisation - Proteomics Standards Initiative) Quality Control working group. See <https://hupo-psi.github.io/mzQC/> for details.
This package provides R bindings for Tabulator JS <https://tabulator.info/>. Makes it a breeze to create highly customizable interactive tables in rmarkdown documents and shiny applications. It includes filtering, grouping, editing, input validation, history recording, column formatters, packaged themes and more.
Sequential permutation testing for statistical significance of predictors in random forests and other prediction methods. The main function of the package is rfvimptest(), which allows to test for the statistical significance of predictors in random forests using different (sequential) permutation test strategies [1]. The advantage of sequential over conventional permutation tests is that they are computationally considerably less intensive, as the sequential procedure is stopped as soon as there is sufficient evidence for either the null or the alternative hypothesis. Reference: [1] Hapfelmeier, A., Hornung, R. & Haller, B. (2023) Efficient permutation testing of variable importance measures by the example of random forests. Computational Statistics & Data Analysis 181:107689, <doi:10.1016/j.csda.2022.107689>.
Determine the number of dimensions to retain in exploratory factor analysis. The main function, nest(), returns the solution and the plot(nest()) returns a plot.
Drift-Diffusion Model (DDM) has been widely used to model binary decision-making tasks, and many research studies the relationship between DDM parameters and other characteristics of the subject. This package uses RStan to perform generalized liner regression analysis over DDM parameters via a single Bayesian Hierarchical model. Compared to estimating DDM parameters followed by a separate regression model, RegDDM reduces bias and improves statistical power.