Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a system for submitting multiple IP information queries to IP2Location.io'รข s IP Geolocation API and storing the resulting data in a dataframe. You provide a vector of IP addresses and your IP2Location.io API key. The package returns a dataframe with one row per IP address and a column for each available data field (data fields not included in your API plan will contain NAs). This is the second submission of the package to CRAN.
An eclectic collection of short stories and poetry with topics on climate strange, connecting the geopolitical dots, the myth of us versus them, and the idiocy of war. Please refer to the COPYRIGHTS file and the text_citation.cff file for the reference copyright information and for the complete citations of the reference sources, respectively.
Implementation of some Individual Based Models (IBMs, sensu Grimm and Railsback 2005) and methods to create new ones, particularly for population dynamics models (reproduction, mortality and movement). The basic operations for the simulations are implemented in Rcpp for speed.
An R interface to the InfluxDB time series database <https://www.influxdata.com>. This package allows you to fetch and write time series data from/to an InfluxDB server. Additionally, handy wrappers for the Influx Query Language (IQL) to manage and explore a remote database are provided.
This package implements multiple variants of the Information Bottleneck ('IB') method for clustering datasets containing continuous, categorical (nominal/ordinal) and mixed-type variables. The package provides deterministic, agglomerative, generalized, and standard IB clustering algorithms that preserve relevant information while forming interpretable clusters. The Deterministic Information Bottleneck is described in Costa et al. (2024) <doi:10.48550/arXiv.2407.03389>. The standard IB method originates from Tishby et al. (2000) <doi:10.48550/arXiv.physics/0004057>, the agglomerative variant from Slonim and Tishby (1999) <https://papers.nips.cc/paper/1651-agglomerative-information-bottleneck>, and the generalized IB from Strouse and Schwab (2017) <doi:10.1162/NECO_a_00961>.
This package implements an algorithm for fitting a generative model with an intractable likelihood using only box constraints on the parameters. The implemented algorithm consists of two phases. The first phase (global search) aims to identify the region containing the best solution, while the second phase (local search) refines this solution using a trust-region version of the Fisher scoring method to solve a quasi-likelihood equation. See Guido Masarotto (2025) <doi:10.48550/arXiv.2511.08180> for the details of the algorithm and supporting results.
This package provides composable invertible transforms for (sparse) matrices.
This package provides functions to analyse missing value mechanisms and to impute data sets in the context of bottom-up MS-based proteomics.
Calculate AIC's and AICc's of unimodal model (one normal distribution) and bimodal model(a mixture of two normal distributions) which fit the distribution of indices of asymmetry (IAS), and plot their density, to help determine IAS distribution is unimodal or bimodal.
Using embedded sdmx queries, get the data of more than 150 000 insee series from bdm macroeconomic database.
Set of functions to impute missing rare earth data, calculate La and Pr concentrations and Ce anomalies in zircons based on the Chondrite-Onuma and Chondrite-Lattice of Carrasco-Godoy and Campbell (2023) <doi:10.1007/s00410-023-02025-9> and the Logarithmic regression from Zhong et al. (2019) <doi:10.1007/s00710-019-00682-y>.
Query for enriched data such as country, region, city, latitude & longitude, ZIP code, time zone, Autonomous System, Internet Service Provider, domain, net speed, International direct dialing (IDD) code, area code, weather station data, mobile data, elevation, usage type, address type, advertisement category, fraud score, and proxy data with an IP address. You can also query a list of hosted domain names for the IP address too. This package uses the IP2Location.io API to query this data. To get started with a free API key, sign up here <https://www.ip2location.io/sign-up?ref=1>.
The methods in this package adds to the functionality of the intamap package, such as bias correction and network optimization. Pebesma et al (2010) gives an overview of the methods behind and possible usage <doi:10.1016/j.cageo.2010.03.019>.
Iterated Function Systems Estimator as in Iacus and La Torre (2005) <doi:10.1155/JAMDS.2005.33>.
Simulation of the random evolution of heterogeneous populations using stochastic Individual-Based Models (IBMs) <doi:10.48550/arXiv.2303.06183>. The package enables users to simulate population evolution, in which individuals are characterized by their age and some characteristics, and the population is modified by different types of events, including births/arrivals, death/exit events, or changes of characteristics. The frequency at which an event can occur to an individual can depend on their age and characteristics, but also on the characteristics of other individuals (interactions). Such models have a wide range of applications. For instance, IBMs can be used for simulating the evolution of a heterogeneous insurance portfolio with selection or for validating mortality forecasts. This package overcomes the limitations of time-consuming IBMs simulations by implementing new efficient algorithms based on thinning methods, which are compiled using the Rcpp package while providing a user-friendly interface.
Reproducible, programmatic retrieval of datasets from the Inter-university Consortium for Political and Social Research archive.
This package provides datasets and functions for the class "Modelling and Data Analysis for Pharmaceutical Sciences". The datasets can be used to present various methods of data analysis and statistical modeling. Functions for data visualization are also implemented.
This package implements a variety of nonparametric and parametric methods that are commonly used when the data set is a mixture of paired observations and independent samples. The package also calculates and returns values of different tests with their corresponding p-values. Bhoj, D. S. (1991) <doi:10.1002/bimj.4710330108> "Testing equality of means in the presence of correlation and missing data". Dubnicka, S. R., Blair, R. C., and Hettmansperger, T. P. (2002) <doi:10.22237/jmasm/1020254460> "Rank-based procedures for mixed paired and two-sample designs". Einsporn, R. L. and Habtzghi, D. (2013) <https://pdfs.semanticscholar.org/89a3/90bafeb2bc41ed4414533cfd5ab84a6b54b6.pdf> "Combining paired and two-sample data using a permutation test". Ekbohm, G. (1976) <doi:10.1093/biomet/63.2.299> "On comparing means in the paired case with incomplete data on both responses". Lin, P. E. and Stivers, L. E. (1974) <doi:10.1093/biomet/61.2.325> On difference of means with incomplete data". Maritz, J. S. (1995) <doi:10.1111/j.1467-842x.1995.tb00649.x> "A permutation paired test allowing for missing values".
This package provides a joint mixture model has been developed by Majumdar et al. (2025) <doi:10.48550/arXiv.2412.17511> that integrates information from gene expression data and methylation data at the modelling stage to capture their inherent dependency structure, enabling simultaneous identification of differentially methylated cytosine-guanine dinucleotide (CpG) sites and differentially expressed genes. The model leverages a joint likelihood function that accounts for the nested structure in the data, with parameter estimation performed using an expectation-maximisation algorithm.
Uses data and researcher's beliefs on measurement error and instrumental variable (IV) endogeneity to generate the space of consistent beliefs across measurement error, instrument endogeneity, and instrumental relevance for IV regressions. Package based on DiTraglia and Garcia-Jimeno (2020) <doi:10.1080/07350015.2020.1753528>.
Reads the output of the PerkinElmer InForm software <http://www.perkinelmer.com/product/inform-cell-analysis-one-seat-cls135781>. In addition to cell-density count, it can derive statistics of intercellular spatial distance for each cell-type.
After testing for biased treatment assignment in an observational study using an unaffected outcome, the sensitivity analysis is constrained to be compatible with that test. The package uses the optimization software gurobi obtainable from <https://www.gurobi.com/>, together with its associated R package, also called gurobi; see: <https://www.gurobi.com/documentation/7.0/refman/installing_the_r_package.html>. The method is a substantial computational and practical enhancement of a concept introduced in Rosenbaum (1992) Detecting bias with confidence in observational studies Biometrika, 79(2), 367-374 <doi:10.1093/biomet/79.2.367>.
Imputing blockwise missing data by imprecise imputation, featuring a domain-based, variable-wise, and case-wise strategy. Furthermore, the estimation of lower and upper bounds for unconditional and conditional probabilities based on the obtained imprecise data is implemented. Additionally, two utility functions are supplied: one to check whether variables in a data set contain set-valued observations; and another to merge two already imprecisely imputed data. The method is described in a technical report by Endres, Fink and Augustin (2018, <doi:10.5282/ubm/epub.42423>).
This network estimation procedure eLasso, which is based on the Ising model, combines l1-regularized logistic regression with model selection based on the Extended Bayesian Information Criterion (EBIC). EBIC is a fit measure that identifies relevant relationships between variables. The resulting network consists of variables as nodes and relevant relationships as edges. Can deal with binary data.