Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Flexibly implements Integral Projection Models using a mathematical(ish) syntax. This package will not help with the vital rate modeling process, but will help convert those regression models into an IPM. ipmr handles density dependence and environmental stochasticity, with a couple of options for implementing the latter. In addition, provides functions to avoid unintentional eviction of individuals from models. Additionally, provides model diagnostic tools, plotting functionality, stochastic/deterministic simulations, and analysis tools. Integral projection models are described in depth by Easterling et al. (2000) <doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2>, Merow et al. (2013) <doi:10.1111/2041-210X.12146>, Rees et al. (2014) <doi:10.1111/1365-2656.12178>, and Metcalf et al. (2015) <doi:10.1111/2041-210X.12405>. Williams et al. (2012) <doi:10.1890/11-2147.1> discuss the problem of unintentional eviction.
Up-to-date data from the Unicode CLDR Project (where CLDR stands for Common Locale Data Repository') are available here as a series of easy-to-parse datasets. Several functions are provided for extracting key elements from the tabular datasets.
We propose the inverse probability-of-censoring weighted (IPCW) Kendall's tau to measure the association of the survival trait with biomarkers and Kendall's partial correlation to reflect the relationship of the survival trait with interaction variable conditional on main effects, as described in Wang and Chen (2020) <doi:10.1093/bioinformatics/btaa017>.
Implement a multivariate analysis of the impact of items to identify a bias in the questionnaire validation of Likert-type scale variables. The items requires considering a null value (category doesn't have tendency). Offering frequency, importance and impact of the items.
Manipulate integer-bounded intervals including finding overlaps, piling and merging.
This package provides a monthly summary of Iowa liquor (class E) sales from January 2015 to October 2020. See the package website for more information, documentation and examples. Data source: Iowa Data portal <https://data.iowa.gov/resource/m3tr-qhgy.csv>.
Allows the construction selection indices based on estimated breeding values in animal and plant breeding and to calculate several analytic measures around to assess its impact on genetic and phenotypic progress. The methodology thereby allows to analyze genetic gain of traits in the breeding goal which are not part of the actual index and automatically computes several analytic measures. It further allows to retrospectively derive realized economic weights from observed genetic trends. The framework is described in Simianer, H., Heise, J., Rensing, S., Pook, T. Geibel, J. and Reimer, C. (2023) <doi:10.1186/s12711-023-00807-0>.
Uses data and researcher's beliefs on measurement error and instrumental variable (IV) endogeneity to generate the space of consistent beliefs across measurement error, instrument endogeneity, and instrumental relevance for IV regressions. Package based on DiTraglia and Garcia-Jimeno (2020) <doi:10.1080/07350015.2020.1753528>.
Introductory statistics methods to accompany "Investigating Statistical Concepts, Applications, and Methods" (ISCAM) by Beth Chance & Allan Rossman (2024) <https://rossmanchance.com/iscam4/>. Tools to introduce statistical concepts with a focus on simulation approaches. Functions are verbose, designed to provide ample output for students to understand what each function does. Additionally, most functions are accompanied with plots. The package is designed to be used in an educational setting alongside the ISCAM textbook.
Estimation of the most-left informative set of gross returns (i.e., the informative set). The procedure to compute the informative set adjusts the method proposed by Mariani et al. (2022a) <doi:10.1007/s11205-020-02440-6> and Mariani et al. (2022b) <doi:10.1007/s10287-022-00422-2> to gross returns of financial assets. This is accomplished through an adaptive algorithm that identifies sub-groups of gross returns in each iteration by approximating their distribution with a sequence of two-component log-normal mixtures. These sub-groups emerge when a significant change in the distribution occurs below the median of the financial returns, with their boundary termed as the â change point" of the mixture. The process concludes when no further change points are detected. The outcome encompasses parameters of the leftmost mixture distributions and change points of the analyzed financial time series. The functionalities of the INFOSET package include: (i) modelling asset distribution detecting the parameters which describe left tail behaviour (infoset function), (ii) clustering, (iii) labeling of the financial series for predictive and classification purposes through a Left Risk measure based on the first change point (LR_cp function) (iv) portfolio construction (ptf_construction function). The package also provide a specific function to construct rolling windows of different length size and overlapping time.
Electricity is not made equal and it vary in its carbon footprint (or carbon intensity) depending on its source. This package enables to access and query data provided by the Carbon Intensity API (<https://carbonintensity.org.uk/>). National Gridâ s Carbon Intensity API provides an indicative trend of regional carbon intensity of the electricity system in Great Britain.
This package provides the dataset and an implementation of the method illustrated in Friel, N., Rastelli, R., Wyse, J. and Raftery, A.E. (2016) <DOI:10.1073/pnas.1606295113>.
This package provides tools for importing, merging, and analysing data from international assessment studies (TIMSS, PIRLS, PISA, ICILS, and PIAAC).
Most existing approaches for network reconstruction can only infer an overall network and, also, fail to capture a complete set of network properties. To address these issues, a new model has been developed, which converts static data into their dynamic form. idopNetwork is an R interface to this model, it can inferring informative, dynamic, omnidirectional and personalized networks. For more information on functional clustering part, see Kim et al. (2008) <doi:10.1534/genetics.108.093690>, Wang et al. (2011) <doi:10.1093/bib/bbr032>. For more information on our model, see Chen et al. (2019) <doi:10.1038/s41540-019-0116-1>, and Cao et al. (2022) <doi:10.1080/19490976.2022.2106103>.
Plots U-Pb data on Wetherill and Tera-Wasserburg concordia diagrams. Calculates concordia and discordia ages. Performs linear regression of measurements with correlated errors using York', Titterington', Ludwig and Omnivariant Generalised Least-Squares ('OGLS') approaches. Generates Kernel Density Estimates (KDEs) and Cumulative Age Distributions (CADs). Produces Multidimensional Scaling (MDS) configurations and Shepard plots of multi-sample detrital datasets using the Kolmogorov-Smirnov distance as a dissimilarity measure. Calculates 40Ar/39Ar ages, isochrons, and age spectra. Computes weighted means accounting for overdispersion. Calculates U-Th-He (single grain and central) ages, logratio plots and ternary diagrams. Processes fission track data using the external detector method and LA-ICP-MS, calculates central ages and plots fission track and other data on radial (a.k.a. Galbraith') plots. Constructs total Pb-U, Pb-Pb, Th-Pb, K-Ca, Re-Os, Sm-Nd, Lu-Hf, Rb-Sr and 230Th-U isochrons as well as 230Th-U evolution plots.
Generates random numbers corresponding to the events on a Poisson point process with changing event rates. This includes the possibility to incorporate additional information such as the number of events occurring or the location of an already known event. It can also generate the probability density functions of specific events in the cases where additional information is available. Based on Hohmann (2019) <arXiv:1901.10754>.
Implementation of Tyler, Critchley, Duembgen and Oja's (JRSS B, 2009, <doi:10.1111/j.1467-9868.2009.00706.x>) and Oja, Sirkia and Eriksson's (AJS, 2006, <https://www.ajs.or.at/index.php/ajs/article/view/vol35,%20no2%263%20-%207>) method of two different scatter matrices to obtain an invariant coordinate system or independent components, depending on the underlying assumptions.
Fit parametric models for time-to-event data that show an initial incubation period', i.e., a variable delay phase where the hazard is zero. The delayed Weibull distribution serves as foundational data model. The specific method of MPSE (maximum product of spacings estimation) and MLE-based methods are used for parameter estimation. Bootstrap confidence intervals for parameters and significance tests in a two group setting are provided.
Collect marketing data from Instagram Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
This package provides functions to fetch market data, search historical prices, execute trades, and get account details from the IG Trading REST API <https://labs.ig.com>. Returns tidy tibbles for easy analysis. Trading contracts for difference (CFDs), options and spread bets carries a high risk of losing money. This package is not financial or trading advice.
Data from the United States Center for Medicare and Medicaid Services (CMS) is included in this package. There are ICD-9 and ICD-10 diagnostic and procedure codes, and lists of the chapter and sub-chapter headings and the ranges of ICD codes they encompass. There are also two sample datasets. These data are used by the icd package for finding comorbidities.
This package implements inequality constrained inference. This includes parameter estimation in normal (linear) models under linear equality and inequality constraints, as well as normal likelihood ratio tests involving inequality-constrained hypotheses. For inequality-constrained linear models, averaging over R-squared for different orderings of regressors is also included.
Allows the simulation of the recruitment and both the event and treatment phase of a clinical trial. Based on these simulations, the timing of interim analyses can be assessed.
Interactive plots for R.