Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Toolkit for identification and statistical testing of RNA editing signals from within R. Provides support for identifying sites from bulk-RNA and single cell RNA-seq datasets, and general methods for extraction of allelic read counts from alignment files. Facilitates annotation and exploratory analysis of editing signals using Bioconductor packages and resources.
RnBeads annotation package for the assembly hg38.
This package does nucleosome positioning using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.
Affymetrix rta10 annotation data (chip rta10probeset) assembled using data from public repositories.
ramr is an R package for detection of epimutations (i.e., infrequent aberrant DNA methylation events) in large data sets obtained by methylation profiling using array or high-throughput methylation sequencing. In addition, package provides functions to visualize found aberrantly methylated regions (AMRs), to generate sets of all possible regions to be used as reference sets for enrichment analysis, and to generate biologically relevant test data sets for performance evaluation of AMR/DMR search algorithms.
This package selects genes associated with survival.
RNAmodR.RiboMethSeq implements the detection of 2'-O methylations on RNA from experimental data generated with the RiboMethSeq protocol. The package builds on the core functionality of the RNAmodR package to detect specific patterns of the modifications in high throughput sequencing data.
This package provides utilities to re-use content across chapters of a Bioconductor book. This is mostly based on functionality developed while writing the OSCA book, but generalized for potential use in other large books with heavy compute. Also contains some functions to assist book deployment.
The R implementation for the Grammar of Succint Lipid Nomenclature parses different short hand notation dialects for lipid names. It normalizes them to a standard name. It further provides calculated monoisotopic masses and sum formulas for each successfully parsed lipid name and supplements it with LIPID MAPS Category and Class information. Also, the structural level and further structural details about the head group, fatty acyls and functional groups are returned, where applicable.
RgnTX allows the integration of transcriptome annotations so as to model the complex alternative splicing patterns. It supports the testing of transcriptome elements without clear isoform association, which is often the real scenario due to technical limitations. It involves functions that do permutaion test for evaluating association between features and transcriptome regions.
Affymetrix ragene11 annotation data (chip ragene11stprobeset) assembled using data from public repositories.
Microarray gene expression data from the study of Vawter et al., 2004.
The Zarr specification defines a format for chunked, compressed, N-dimensional arrays. It's design allows efficient access to subsets of the stored array, and supports both local and cloud storage systems. Rarr aims to implement this specification in R with minimal reliance on an external tools or libraries.
This package provides SummarizedExperiment-like containers for storing and manipulating dimensionally-reduced assay data. The ReducedExperiment classes allow users to simultaneously manipulate their original dataset and their decomposed data, in addition to other method-specific outputs like feature loadings. Implements utilities and specialised classes for the application of stabilised independent component analysis (sICA) and weighted gene correlation network analysis (WGCNA).
This package performs differential pattern analysis for Ribo-seq data. It identifies genes with significantly different patterns in the ribosome footprint between two conditions. RiboDiPA contains five major components including bam file processing, P-site mapping, data binning, differential pattern analysis and footprint visualization.
This package provides a transcriptional regulatory network (TRN) consists of a collection of transcription factors (TFs) and the regulated target genes. TFs are regulators that recognize specific DNA sequences and guide the expression of the genome, either activating or repressing the expression the target genes. The set of genes controlled by the same TF forms a regulon. This package provides classes and methods for the reconstruction of TRNs and analysis of regulons.
Second version of RareVariantVis package aims to provide comprehensive information about rare variants for your genome data. It annotates, filters and presents genomic variants (especially rare ones) in a global, per chromosome way. For discovered rare variants CRISPR guide RNAs are designed, so the user can plan further functional studies. Large structural variants, including copy number variants are also supported. Package accepts variants directly from variant caller - for example GATK or Speedseq. Output of package are lists of variants together with adequate visualization. Visualization of variants is performed in two ways - standard that outputs png figures and interactive that uses JavaScript d3 package. Interactive visualization allows to analyze trio/family data, for example in search for causative variants in rare Mendelian diseases, in point-and-click interface. The package includes homozygous region caller and allows to analyse whole human genomes in less than 30 minutes on a desktop computer. RareVariantVis disclosed novel causes of several rare monogenic disorders, including one with non-coding causative variant - keratolythic winter erythema.
"rhinotypeR" is designed to automate the comparison of sequence data against prototype strains, streamlining the genotype assignment process. By implementing predefined pairwise distance thresholds, this package makes genotype assignment accessible to researchers and public health professionals. This tool enhances our epidemiological toolkit by enabling more efficient surveillance and analysis of rhinoviruses (RVs) and other viral pathogens with complex genomic landscapes. Additionally, "rhinotypeR" supports comprehensive visualization and analysis of single nucleotide polymorphisms (SNPs) and amino acid substitutions, facilitating in-depth genetic and evolutionary studies.
RNAmodR provides classes and workflows for loading/aggregation data from high througput sequencing aimed at detecting post-transcriptional modifications through analysis of specific patterns. In addition, utilities are provided to validate and visualize the results. The RNAmodR package provides a core functionality from which specific analysis strategies can be easily implemented as a seperate package.
Codelink UniSet Rat I Bioarray (~10 000 rat gene targets) annotation data (chip r10kcod) assembled using data from public repositories.
Affymetrix Affymetrix RT_U34 Array annotation data (chip rtu34) assembled using data from public repositories.
Probabilistic analysis of probe reliability and differential gene expression on short oligonucleotide arrays.
RegulonDB has collected, harmonized and centralized data from hundreds of experiments for nearly two decades and is considered a point of reference for transcriptional regulation in Escherichia coli K12. Here, we present the regutools R package to facilitate programmatic access to RegulonDB data in computational biology. regutools provides researchers with the possibility of writing reproducible workflows with automated queries to RegulonDB. The regutools package serves as a bridge between RegulonDB data and the Bioconductor ecosystem by reusing the data structures and statistical methods powered by other Bioconductor packages. We demonstrate the integration of regutools with Bioconductor by analyzing transcription factor DNA binding sites and transcriptional regulatory networks from RegulonDB. We anticipate that regutools will serve as a useful building block in our progress to further our understanding of gene regulatory networks.
The ReactomeGSA packages uses Reactome's online analysis service to perform a multi-omics gene set analysis. The main advantage of this package is, that the retrieved results can be visualized using REACTOME's powerful webapplication. Since Reactome's analysis service also uses R to perfrom the actual gene set analysis you will get similar results when using the same packages (such as limma and edgeR) locally. Therefore, if you only require a gene set analysis, different packages are more suited.