Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides summarized MinION sequencing data for Salmonella Typhi published by Ashton et al. in 2015. Three replicate runs are each provided as Fast5Summary objects.
MetagenomeSeq is designed to determine features (be it OTU, species, etc.) that are differentially abundant between two or more groups of multiple samples. This package is designed to address the effects of both normalization and under-sampling of microbial communities on disease association detection and the testing of feature correlations.
UCell is a package for evaluating gene signatures in single-cell datasets. UCell signature scores, based on the Mann-Whitney U statistic, are robust to dataset size and heterogeneity, and their calculation demands less computing time and memory than other available methods, enabling the processing of large datasets in a few minutes even on machines with limited computing power. UCell can be applied to any single-cell data matrix, and includes functions to directly interact with SingleCellExperiment and Seurat objects.
The package is able to read bead-level data (raw TIFFs and text files) output by BeadScan as well as bead-summary data from BeadStudio. Methods for quality assessment and low-level analysis are provided.
CopywriteR extracts DNA copy number information from targeted sequencing by utilizing off-target reads. It allows for extracting uniformly distributed copy number information, can be used without reference, and can be applied to sequencing data obtained from various techniques including chromatin immunoprecipitation and target enrichment on small gene panels. Thereby, CopywriteR constitutes a widely applicable alternative to available copy number detection tools.
This package supports data management of large-scale whole-genome sequencing variant calls with thousands of individuals: genotypic data (e.g., SNVs, indels and structural variation calls) and annotations in SeqArray GDS files are stored in an array-oriented and compressed manner, with efficient data access using the R programming language.
This package defines low-level functions for mass spectrometry data and is independent of any high-level data structures. These functions include mass spectra processing functions (noise estimation, smoothing, binning), quantitative aggregation functions (median polish, robust summarisation, etc.), missing data imputation, data normalisation (quantiles, vsn, etc.) as well as misc helper functions, that are used across high-level data structure within the R for Mass Spectrometry packages.
This package provides a method to purify a cell type or cell population of interest from heterogeneous datasets. scGate package automatizes marker-based purification of specific cell populations, without requiring training data or reference gene expression profiles. scGate takes as input a gene expression matrix stored in a Seurat object and a GM, consisting of a set of marker genes that define the cell population of interest. It evaluates the strength of signature marker expression in each cell using the rank-based method UCell, and then performs kNN smoothing by calculating the mean UCell score across neighboring cells. kNN-smoothing aims at compensating for the large degree of sparsity in scRNAseq data. Finally, a universal threshold over kNN-smoothed signature scores is applied in binary decision trees generated from the user-provided gating model, to annotate cells as either “pure” or “impure”, with respect to the cell population of interest.
Oscope is a oscillatory genes identifier in unsynchronized single cell RNA-seq. This statistical pipeline has been developed to identify and recover the base cycle profiles of oscillating genes in an unsynchronized single cell RNA-seq experiment. The Oscope pipeline includes three modules: a sine model module to search for candidate oscillator pairs; a K-medoids clustering module to cluster candidate oscillators into groups; and an extended nearest insertion module to recover the base cycle order for each oscillator group.
This package provides a framework to perform Non-negative Matrix Factorization (NMF). The package implements a set of already published algorithms and seeding methods, and provides a framework to test, develop and plug new or custom algorithms. Most of the built-in algorithms have been optimized in C++, and the main interface function provides an easy way of performing parallel computations on multicore machines.
This package provides functions for inferring continuous, branching lineage structures in low-dimensional data. Slingshot was designed to model developmental trajectories in single-cell RNA sequencing data and serve as a component in an analysis pipeline after dimensionality reduction and clustering. It is flexible enough to handle arbitrarily many branching events and allows for the incorporation of prior knowledge through supervised graph construction.
This package provides processed 22 samples from BrainSpan keeping only the information for chromosome 21. Data is stored in the BigWig format and is used for examples in other packages.
This package provides a generic three-step pre-processing package for protein microarray data. This package contains different data pre-processing procedures to allow comparison of their performance. These steps are background correction, the coefficient of variation (CV) based filtering, batch correction and normalization.
Data package for JASPAR2020. To explore these databases, utilize the TFBSTools package (version 1.23.1 or higher).
The aim of XINA is to determine which proteins exhibit similar patterns within and across experimental conditions, since proteins with co-abundance patterns may have common molecular functions. XINA imports multiple datasets, tags dataset in silico, and combines the data for subsequent subgrouping into multiple clusters. The result is a single output depicting the variation across all conditions. XINA not only extracts coabundance profiles within and across experiments, but also incorporates protein-protein interaction databases and integrative resources such as Kyoto encyclopedia of genes and genomes (KEGG) to infer interactors and molecular functions, respectively, and produces intuitive graphical outputs.
In order to assess the quality of a set of predicted genes for a genome, evidence must first be mapped to that genome. Next, each gene must be categorized based on how strong the evidence is for or against that gene. The AssessORF package provides the functions and class structures necessary for accomplishing those tasks, using proteomics hits and evolutionarily conserved start codons as the forms of evidence.
This package provides the GInteractions, InteractionSet and ContactMatrix objects and associated methods for storing and manipulating genomic interaction data from Hi-C and ChIA-PET experiments.
This package provides UCSC phastCons conservation scores for the human genome (hg19) calculated from multiple alignments with other 99 vertebrate species.
This is a package for parsing Affymetrix files (CDF, CEL, CHP, BPMAP, BAR). It provides methods for fast and memory efficient parsing of Affymetrix files using the Affymetrix' Fusion SDK. Both ASCII- and binary-based files are supported. Currently, there are methods for reading chip definition file (CDF) and a cell intensity file (CEL). These files can be read either in full or in part. For example, probe signals from a few probesets can be extracted very quickly from a set of CEL files into a convenient list structure.
This package implements a variety of methods for combining p-values in differential analyses of genome-scale datasets. Functions can combine p-values across different tests in the same analysis (e.g., genomic windows in ChIP-seq, exons in RNA-seq) or for corresponding tests across separate analyses (e.g., replicated comparisons, effect of different treatment conditions). Support is provided for handling log-transformed input p-values, missing values and weighting where appropriate.
The biovizBase package is designed to provide a set of utilities, color schemes and conventions for genomic data. It serves as the base for various high-level packages for biological data visualization. This saves development effort and encourages consistency.
The AffiXcan package imputes a genetically regulated expression (GReX) for a set of genes in a sample of individuals, using a method based on the total binding affinity (TBA). Statistical models to impute GReX can be trained with a training dataset where the real total expression values are known.
This package provides the lengths of mRNA transcripts for a number of genomes and gene ID formats, largely based on the UCSC table browser.
This package is a computational tool box for radio-genomic analysis which integrates radio-response data, radio-biological modelling and comprehensive cell line annotations for hundreds of cancer cell lines. The RadioSet class enables creation and manipulation of standardized datasets including information about cancer cells lines, radio-response assays and dose-response indicators. Included methods allow fitting and plotting dose-response data using established radio-biological models along with quality control to validate results. Additional functions related to fitting and plotting dose response curves, quantifying statistical correlation and calculating AUC or SF are included.