Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides additional functions for creating beautiful tables with gt'. The functions are generally wrappers around boilerplate or adding opinionated niche capabilities and helpers functions.
An extension of ggplot2 for creating complex genomic maps. It builds on the power of ggplot2 and tidyverse adding new ggplot2'-style geoms & positions and dplyr'-style verbs to manipulate the underlying data. It implements a layout concept inspired by ggraph and introduces tracks to bring tidiness to the mess that is genomics data.
The increasing popularity of geographically weighted (GW) techniques has resulted in the development of several R packages, such as GWmodel'. To facilitate their usages, GWmodelVis provides a shiny'-based interactive visualization toolkit for geographically weighted (GW) models. It includes a number of visualization tools, including dynamic mapping of parameter surfaces, statistical visualization, sonification and exporting videos via FFmpeg'.
Interactively applies the Guidelines for Reporting About Network Data (GRAND) to an igraph object, and generates a uniform narrative or tabular description of the object.
Geometric objects defined in geozoo can be simulated or displayed in the R package tourr'.
This package provides functions for downloading of geographic data for use in spatial analysis and mapping. The package facilitates access to climate, crops, elevation, land use, soil, species occurrence, accessibility, administrative boundaries and other data.
Receives two vectors, computes appropriate function for group comparison (i.e., t-test, Mann-Whitney; equality of variances), and reports the findings (mean/median, standard deviation, test statistic, p-value, effect size) in APA format (Fay, M.P., & Proschan, M.A. (2010)<DOI: 10.1214/09-SS051>).
This package provides tools.
This package provides classes for GeoJSON to make working with GeoJSON easier. Includes S3 classes for GeoJSON classes with brief summary output, and a few methods such as extracting and adding bounding boxes, properties, and coordinate reference systems; working with newline delimited GeoJSON'; and serializing to/from Geobuf binary GeoJSON format.
Using simple input, this package creates plots of gene models. Users can create plots of alternatively spliced gene variants and the positions of mutations and other gene features.
This package provides a genomic simulation approach for creating biologically informed individual genotypes from empirical data that 1) samples alleles from populations without replacement, 2) segregates alleles based on species-specific recombination rates. gscramble is a flexible simulation approach that allows users to create pedigrees of varying complexity in order to simulate admixed genotypes. Furthermore, it allows users to track haplotype blocks from the source populations through the pedigrees.
Focused on extracting important data from track points such as speed, distance, elevation difference and azimuth.(PLAZA, J. et al., 2022) <doi:10.1016/j.applanim.2022.105643>.
Computes the gravitational and magnetic anomalies generated by 3-D vertical rectangular prisms at specific observation points using the method of Plouff (1976) <doi:10.1190/1.1440645>.
The Darwin Core data standard is widely used to share biodiversity information, most notably by the Global Biodiversity Information Facility and its partner nodes; but converting data to this standard can be tricky. galaxias is functionally similar to devtools', but with a focus on building Darwin Core Archives rather than R packages, enabling data to be shared and re-used with relative ease. For details see Wieczorek and colleagues (2012) <doi:10.1371/journal.pone.0029715>.
Fit a geographically weighted logistic elastic net regression. Detailed explanations can be found in Yoneoka et al. (2016): New algorithm for constructing area-based index with geographical heterogeneities and variable selection: An application to gastric cancer screening <doi:10.1038/srep26582>.
The geom_rain() function adds different geoms together using ggplot2 to create raincloud plots.
Provide specialized ggplot2 layers and scales for spatial uncertainty visualization, including bivariate choropleth maps, pixel maps, glyph maps, and exceedance probability maps.
This package provides functions to assess the goodness of fit of binary, multinomial and ordinal logistic models. Included are the Hosmer-Lemeshow tests (binary, multinomial and ordinal) and the Lipsitz and Pulkstenis-Robinson tests (ordinal).
Optimal design analysis algorithms for any study design that can be represented or modelled as a generalised linear mixed model including cluster randomised trials, cohort studies, spatial and temporal epidemiological studies, and split-plot designs. See <https://github.com/samuel-watson/glmmrBase/blob/master/README.md> for a detailed manual on model specification. A detailed discussion of the methods in this package can be found in Watson, Hemming, and Girling (2023) <doi:10.1177/09622802231202379>.
Automates the process of adding, committing, and pushing changes to a git repository using commit messages generated by passing the git diff output to the OpenAI GPT-3.5 Turbo model (<https://platform.openai.com/docs/models/gpt-3>).
This package provides a comprehensive interface for Google Gemini API, enabling users to access and utilize Gemini Large Language Model (LLM) functionalities directly from R. This package facilitates seamless integration with Google Gemini, allowing for advanced language processing, text generation, and other AI-driven capabilities within the R environment. For more information, please visit <https://ai.google.dev/docs/gemini_api_overview>.
This package provides a native R implementation of grammatical evolution (GE). GE facilitates the discovery of programs that can achieve a desired goal. This is done by performing an evolutionary optimisation over a population of R expressions generated via a user-defined context-free grammar (CFG) and cost function.
This package provides a variety of multivariable data summary statistics and constructions have been proposed, either to generalize univariable analogs or to exploit multivariable properties. Notable among these are the bivariate peelings surveyed by Green (1981, ISBN:978-0-471-28039-2), the bag-and-bolster plots proposed by Rousseeuw &al (1999) <doi:10.1080/00031305.1999.10474494>, and the minimum spanning trees used by Jolliffe (2002) <doi:10.1007/b98835> to represent high-dimensional relationships among data in a low-dimensional plot. Additionally, biplots of singular value--decomposed tabular data, such as from principal components analysis, make use of vectors, calibrated axes, and other representations of variable elements to complement point markers for case elements; see Gabriel (1971) <doi:10.1093/biomet/58.3.453> and Gower & Harding (1988) <doi:10.1093/biomet/75.3.445> for original proposals. Because they treat the abscissa and ordinate as commensurate or the data elements themselves as point masses or unit vectors, these multivariable tools can be thought of as belonging to geometric data analysis; see Podani (2000, ISBN:90-5782-067-6) for techniques and applications and Le Roux & Rouanet (2005) <doi:10.1007/1-4020-2236-0> for foundations. gggda extends Wickham's (2010) <doi:10.1198/jcgs.2009.07098> layered grammar of graphics with statistical transformation ("stat") and geometric construction ("geom") layers for many of these tools, as well as convenience coordinate systems to emphasize intrinsic geometry of the data.
The gap encodes the distance between clusters and improves interpretation of cluster heatmaps. The gaps can be of the same distance based on a height threshold to cut the dendrogram. Another option is to vary the size of gaps based on the distance between clusters.