Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Filling in the missing entries of a partially observed data is one of fundamental problems in various disciplines of mathematical science. For many cases, data at our interests have canonical form of matrix in that the problem is posed upon a matrix with missing values to fill in the entries under preset assumptions and models. We provide a collection of methods from multiple disciplines under Matrix Completion, Imputation, and Inpainting. See Davenport and Romberg (2016) <doi:10.1109/JSTSP.2016.2539100> for an overview of the topic.
Calculation and plotting of instantaneous unavailabilities of basic events along with the top event of fault trees are issues important in reliability analysis of complex systems. Here, a fault tree is provided in terms of its minimal cut sets, along with reliability and maintainability distribution functions of the basic events. All the methods are derived from Horton (2002, ISBN: 3-936150-21-4), Niloofar and Lazarova-Molnar (2022).
Fits probability distributions to data and plugs into the probaverse suite of R packages so distribution objects are ready for further manipulation and evaluation. Supports methods such as maximum likelihood and L-moments, and provides diagnostics including empirical ranking and quantile score.
This package provides a "tabular-data-resource" (<https://specs.frictionlessdata.io/tabular-data-resource/>) is a simple format to describe a singular tabular data resource such as a CSV file. It includes support both for metadata such as author and title and a schema to describe the data, for example the types of the fields/columns in the data. Create a tabular-data-resource by providing a data.frame and specifying metadata. Write and read tabular-data-resources to and from disk.
On import, the XML information is converted to a dataframe that reflects the hierarchical XML structure. Intuitive functions allow to navigate within this transparent XML data structure (without any knowledge of XPath'). flatXML also provides tools to extract data from the XML into a flat dataframe that can be used to perform statistical operations. It also supports converting dataframes to XML.
An interface to the core Familias functions which are programmed in C++. The implementation is described in Egeland, Mostad and Olaisen (1997) <doi:10.1016/S1355-0306(97)72202-0> and Simonsson and Mostad (2016) <doi:10.1016/j.fsigen.2016.04.005>.
The Futureverse is a set of packages for parallel and distributed process with the future package at its core, cf. Bengtsson (2021) <doi:10.32614/RJ-2021-048>. This package is designed to make it easy to install common Futureverse packages in a single step. This package is intended for end-users, interactive use, and R scripts. Packages must not list it as a dependency - instead, explicitly declare each Futureverse package as a dependency as needed.
This package provides a set of function for clustering data observation with hybrid method Fuzzy ART and K-Means by Sengupta, Ghosh & Dan (2011) <doi:10.1080/0951192X.2011.602362>.
Miscellaneous utilities, tools and helper functions for finding and searching files on disk, searching for and removing R objects from the workspace. Does not import or depend on any third party package, but on core R only (i.e. it may depend on packages with priority base').
This package provides a toolkit for Flux Balance Analysis and related metabolic modeling techniques. Functions are provided for: parsing models in tabular format, converting parsed metabolic models to input formats for common linear programming solvers, and evaluating and applying gene-protein-reaction mappings. In addition, there are wrappers to parse a model, select a solver, find the metabolic fluxes, and return the results applied to the original model. Compared to other packages in this field, this package puts a much heavier focus on providing reusable components that can be used in the design of new implementation of new techniques, in particular those that involve large parameter sweeps. For a background on the theory, see What is Flux Balance Analysis <doi:10.1038/nbt.1614>.
Runs multiple individual time series models, and combines them into an ensembles of time series models. This is mainly used to predict the results of the monthly labor market report from the United States Bureau of Labor Statistics for virtually any part of the economy reported by the Bureau of Labor Statistics, but it can be easily modified to work with other types of time series data. For example, the package was used to predict the winning men's and women's time for the 2024 London Marathon.
The aim of the package is to provide some basic functions for doing statistics with trapezoidal fuzzy numbers. In particular, the package contains several functions for simulating trapezoidal fuzzy numbers, as well as for calculating some central tendency measures (mean and two types of median), some scale measures (variance, ADD, MDD, Sn, Qn, Tn and some M-estimators) and one diversity index and one inequality index. Moreover, functions for calculating the 1-norm distance, the mid/spr distance and the (phi,theta)-wabl/ldev/rdev distance between fuzzy numbers are included, and a function to calculate the value phi-wabl given a sample of trapezoidal fuzzy numbers.
Code for fitting and assessing models for the growth of trees. In particular for the Bayesian neighborhood competition linear regression model of Allen (2020): methods for model fitting and generating fitted/predicted values, evaluating the effect of competitor species identity using permutation tests, and evaluating model performance using spatial cross-validation.
Description: Provides comprehensive tools for analysing and characterizing mixed-level factorial designs arranged in blocks. Includes construction and validation of incidence structures, computation of C-matrices, evaluation of A-, D-, E-, and MV-efficiencies, checking of orthogonal factorial structure (OFS), diagnostics based on Hamming distance, discrepancy measures, B-criterion, Es^2 statistics, J2-distance and J2-efficiency, Phi-p optimality, and symmetry conditions for universal optimality. The methodological framework follows foundational work on factorial and mixed-level design assessment by Xu and Wu (2001) <doi:10.1214/aos/1013699993>, and Gupta (1983) <doi:10.1111/j.2517-6161.1983.tb01253.x>. These methods assist in selecting, comparing, and studying factorial block designs across a range of experimental situations.
Integrate Item Response Theory (IRT) and Federated Learning to estimate traditional IRT models, including the 2-Parameter Logistic (2PL) and the Graded Response Models, with enhanced privacy. It allows for the estimation in a distributed manner without compromising accuracy. A user-friendly shiny application is included.
Design and simulate fuzzy logic systems using Type-1 and Interval Type-2 Fuzzy Logic. This toolkit includes with graphical user interface (GUI) and an adaptive neuro- fuzzy inference system (ANFIS). This toolkit is a continuation from the previous package ('FuzzyToolkitUoN'). Produced by the Intelligent Modelling & Analysis Group (IMA) and Lab for UnCertainty In Data and decision making (LUCID), University of Nottingham. A big thank you to the many people who have contributed to the development/evaluation of the toolbox. Please cite the toolbox and the corresponding paper <doi:10.1109/FUZZ48607.2020.9177780> when using it. More related papers can be found in the NEWS.
Given vectors of family sizes and number of affecteds per family, calculates the risk of disease recurrence in an unaffected person, conditional on a family having at least k affected members. Methods also model heterogeneity of disease risk across families by fitting a mixture model, allowing for high and low risk families.
Interactive forest plot for clinical trial safety analysis using metalite', reactable', plotly', and Analysis Data Model (ADaM) datasets. Includes functionality for adverse event filtering, incidence-based group filtering, hover-over reveals, and search and sort operations. The workflow allows for metadata construction, data preparation, output formatting, and interactive plot generation.
Computes six functional diversity indices. These are namely, Functional Divergence (FDiv), Function Evenness (FEve), Functional Richness (FRic), Functional Richness intersections (FRic_intersect), Functional Dispersion (FDis), and Rao's entropy (Q) (reviewed in Villéger et al. 2008 <doi:10.1890/07-1206.1>). Provides efficient, modular, and parallel functions to compute functional diversity indices (preprint: <doi:10.32942/osf.io/dg7hw>).
Social Relations Analysis with roles ("Family SRM") are computed, using a structural equation modeling approach. Groups ranging from three members up to an unlimited number of members are supported and the mean structure can be computed. Means and variances can be compared between different groups of families and between roles.
Estimation of mixed models including a subject-specific variance which can be time and covariate dependent. In the joint model framework, the package handles left truncation and allows a flexible dependence structure between the competing events and the longitudinal marker. The estimation is performed under the frequentist framework, using the Marquardt-Levenberg algorithm. (Courcoul, Tzourio, Woodward, Barbieri, Jacqmin-Gadda (2023) <arXiv:2306.16785>).
Brings a set of tools to help and automatically realise the description of principal component analyses (from FactoMineR functions). Detection of existing outliers, identification of the informative components, graphical views and dimensions description are performed threw dedicated functions. The Investigate() function performs all these functions in one, and returns the result as a report document (Word, PDF or HTML).
Parses financial condition and performance data (Call Reports) for institutions in the United States Farm Credit System. Contains functions for downloading files from the Farm Credit Administration (FCA) Call Report archive website and reading the files into tidy data frame format. The archive website can be found at <https://www.fca.gov/bank-oversight/call-report-data-for-download>.
Fitting (hierarchical) hidden Markov models to financial data via maximum likelihood estimation. See Oelschläger, L. and Adam, T. "Detecting Bearish and Bullish Markets in Financial Time Series Using Hierarchical Hidden Markov Models" (2021, Statistical Modelling) <doi:10.1177/1471082X211034048> for a reference on the method. A user guide is provided by the accompanying software paper "fHMM: Hidden Markov Models for Financial Time Series in R", Oelschläger, L., Adam, T., and Michels, R. (2024, Journal of Statistical Software) <doi:10.18637/jss.v109.i09>.