Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functionality to generate, (interactively) modify (by adding, removing and renaming nodes) and convert nested hierarchies between different formats. These tree like structures can be used to define for example complex hierarchical tables used for statistical disclosure control.
This package implements SplitWise', a hybrid regression approach that transforms numeric variables into either single-split (0/1) dummy variables or retains them as continuous predictors. The transformation is followed by stepwise selection to identify the most relevant variables. The default iterative mode adaptively explores partial synergies among variables to enhance model performance, while an alternative univariate mode applies simpler transformations independently to each predictor. For details, see Kurbucz et al. (2025) <doi:10.48550/arXiv.2505.15423>.
Non-negative Matrix Factorization(NMF) is a powerful tool for identifying the key features of microbial communities and a dimension-reduction method. When we are interested in the differences between the structures of two groups of communities, supervised NMF(Yun Cai, Hong Gu and Tobby Kenney (2017),<doi:10.1186/s40168-017-0323-1>) provides a better way to do this, while retaining all the advantages of NMF -- such as interpretability, and being based on a simple biological intuition.
This package creates simulated data from structural equation models with standardized loading. Data generation methods are described in Schneider (2013) <doi:10.1177/0734282913478046>.
This package provides monthly statistics on the number of monthly air passengers at SFO airport such as operating airline, terminal, geo, etc. Data source: San Francisco data portal (DataSF) <https://data.sfgov.org/Transportation/Air-Traffic-Passenger-Statistics/rkru-6vcg>.
Efficient regression analysis under general two-phase sampling, where Phase I includes error-prone data and Phase II contains validated data on a subset.
Two-step and maximum likelihood estimation of Heckman-type sample selection models: standard sample selection models (Tobit-2), endogenous switching regression models (Tobit-5), sample selection models with binary dependent outcome variable, interval regression with sample selection (only ML estimation), and endogenous treatment effects models. These methods are described in the three vignettes that are included in this package and in econometric textbooks such as Greene (2011, Econometric Analysis, 7th edition, Pearson).
Draw syntenic relationships between genome assemblies. There are 3 functions which take a tab delimited file containing alignment data for syntenic blocks between genomes to produce either a linear alignment plot, an evolution highway style plot, or a painted ideogram representing syntenic relationships. There is also a function to convert alignment data in the DESCHRAMBLER/inferCAR format to the required data structure.
Monte Carlo confidence intervals for free and defined parameters in models fitted in the structural equation modeling package lavaan can be generated using the semmcci package. semmcci has three main functions, namely, MC(), MCMI(), and MCStd(). The output of lavaan is passed as the first argument to the MC() function or the MCMI() function to generate Monte Carlo confidence intervals. Monte Carlo confidence intervals for the standardized estimates can also be generated by passing the output of the MC() function or the MCMI() function to the MCStd() function. A description of the package and code examples are presented in Pesigan and Cheung (2024) <doi:10.3758/s13428-023-02114-4>.
This package implements the Self-Similarity Test for Normality (SSTN), a new statistical test designed to assess whether a given sample originates from a normal distribution. The procedure is based on iteratively estimating the characteristic function of the sum of standardized i.i.d. random variables and comparing it to the characteristic function of the standard normal distribution. A Monte Carlo procedure is used to determine the empirical distribution of the test statistic under the null hypothesis. Details of the methodology are described in Anarat and Schwender (2025), "A normality test based on self-similarity" (Submitted).
Create scaled ggplot representations of playing surfaces. Playing surfaces are drawn pursuant to rule-book specifications. This package should be used as a baseline plot for displaying any type of tracking data.
Screen for and analyze non-linear sparse direct effects in the presence of unobserved confounding using the spectral deconfounding techniques (Ä evid, Bühlmann, and Meinshausen (2020)<jmlr.org/papers/v21/19-545.html>, Guo, Ä evid, and Bühlmann (2022) <doi:10.1214/21-AOS2152>). These methods have been shown to be a good estimate for the true direct effect if we observe many covariates, e.g., high-dimensional settings, and we have fairly dense confounding. Even if the assumptions are violated, it seems like there is not much to lose, and the deconfounded models will, in general, estimate a function closer to the true one than classical least squares optimization. SDModels provides functions SDAM() for Spectrally Deconfounded Additive Models (Scheidegger, Guo, and Bühlmann (2025) <doi:10.1145/3711116>) and SDForest() for Spectrally Deconfounded Random Forests (Ulmer, Scheidegger, and Bühlmann (2025) <doi:10.48550/arXiv.2502.03969>).
Sensitivity analysis in unmatched observational studies, with or without strata. The main functions are sen2sample() and senstrat(). See Rosenbaum, P. R. and Krieger, A. M. (1990), JASA, 85, 493-498, <doi:10.1080/01621459.1990.10476226> and Gastwirth, Krieger and Rosenbaum (2000), JRSS-B, 62, 545â 555 <doi:10.1111/1467-9868.00249> .
This package provides an interface to the Sensibo Sky API which allows to remotely control non-smart air conditioning units. See <https://sensibo.com> for more informations.
Generates random values from a univariate and multivariate continuous distribution by using kernel density estimation based on a sample. Duong (2017) <doi:10.18637/jss.v021.i07>, Christian P. Robert and George Casella (2010 ISBN:978-1-4419-1575-7) <doi:10.1007/978-1-4419-1576-4>.
This package provides functions for the collection of 3D points and curves using a stereo camera setup.
Implementation of the original Sequence Globally Unique Identifier (SEGUID) algorithm [Babnigg and Giometti (2006) <doi:10.1002/pmic.200600032>] and SEGUID v2 (<https://www.seguid.org>), which extends SEGUID v1 with support for linear, circular, single- and double-stranded biological sequences, e.g. DNA, RNA, and proteins.
Computes the Exposure-At-Default based on the standardized approach of CRR2 (SA-CCR). The simplified version of SA-CCR has been included, as well as the OEM methodology. Multiple trade types of all the five major asset classes are being supported including the Other Exposure and, given the inheritance- based structure of the application, the addition of further trade types is straightforward. The application returns a list of trees per Counterparty and CSA after automatically separating the trades based on the Counterparty, the CSAs, the hedging sets, the netting sets and the risk factors. The basis and volatility transactions are also identified and treated in specific hedging sets whereby the corresponding penalty factors are applied. All the examples appearing on the regulatory papers (both for the margined and the unmargined workflow) have been implemented including the latest CRR2 developments.
This package provides a fast implementation with additional experimental features for testing, monitoring and dating structural changes in (linear) regression models. strucchangeRcpp features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g. cumulative/moving sum, recursive/moving estimates) and F statistics, respectively. These methods are described in Zeileis et al. (2002) <doi:10.18637/jss.v007.i02>. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals, and their magnitude as well as the model fit can be evaluated using a variety of statistical measures.
This package provides a sparklyr <https://spark.posit.co/> extension that provides an R interface for XGBoost <https://github.com/dmlc/xgboost> on Apache Spark'. XGBoost is an optimized distributed gradient boosting library.
Allows a Simile model saved as a compiled binary to be loaded, parameterized, executed and interrogated. This version works with Simile v6 on.
Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable. Test of independence and feature screening for classification problems can be implemented via the two dependence measures. For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.
This package provides functions common to members of the SISTM team.
Implementation of SING algorithm to extract joint and individual non-Gaussian components from two datasets. SING uses an objective function that maximizes the skewness and kurtosis of latent components with a penalty to enhance the similarity between subject scores. Unlike other existing methods, SING does not use PCA for dimension reduction, but rather uses non-Gaussianity, which can improve feature extraction. Benjamin B.Risk, Irina Gaynanova (2021) <doi:10.1214/21-AOAS1466>.