Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Create and customize interactive collapsible D3 trees using the D3 JavaScript library and the htmlwidgets package. These trees can be used directly from the R console, from RStudio', in Shiny apps and R Markdown documents. When in Shiny the tree layout is observed by the server and can be used as a reactive filter of structured data.
Fits disaggregation regression models using TMB ('Template Model Builder'). When the response data are aggregated to polygon level but the predictor variables are at a higher resolution, these models can be useful. Regression models with spatial random fields. The package is described in detail in Nandi et al. (2023) <doi:10.18637/jss.v106.i11>.
This package provides tools for fitting Bayesian Distributed Lag Models (DLMs) to longitudinal response data that is a count or binary. Count data is fit using negative binomial regression and binary is fit using quantile regression. The contribution of the lags are fit via b-splines. In addition, infers the predictor inclusion uncertainty. Multimomial models are not supported. Based on Dempsey and Wyse (2025) <doi:10.48550/arXiv.2403.03646>.
This package provides functions to compute coefficients measuring the dependence of two or more than two variables. The functions can be deployed to gain information about functional dependencies of the variables with emphasis on monotone functions. The statistics describe how well one response variable can be approximated by a monotone function of other variables. In regression analysis the variable selection is an important issue. In this framework the functions could be useful tools in modeling the regression function. Detailed explanations on the subject can be found in papers Liebscher (2014) <doi:10.2478/demo-2014-0004>; Liebscher (2017) <doi:10.1515/demo-2017-0012>; Liebscher (2021): <https://arfjournals.com/image/catalog/Journals%20Papers/AJSS/No%202%20(2021)/4-AJSS_123-150.pdf>; Liebscher (2021): Kendall regression coefficient. Computational Statistics and Data Analysis 157. 107140.
Generate descriptive statistics such as measures of location, dispersion, frequency tables, cross tables, group summaries and multiple one/two way tables.
This R function implements the nonstationary Kriging model proposed by Tuo, Wu and Yu (2014) <DOI:10.1080/00401706.2013.842935> for analyzing multi-fidelity computer outputs. This function computes the maximum likelihood estimates for the model parameters as well as the predictive means and variances of the exact solution.
Reverse and model the effects of changing deposition rates on geological data and rates. Based on Hohmann (2018) <doi:10.13140/RG.2.2.23372.51841> .
Estimation of distributed lag models (DLMs) based on a Bayesian additive regression trees framework. Includes several extensions of DLMs: treed DLMs and distributed lag mixture models (Mork and Wilson, 2023) <doi:10.1111/biom.13568>; treed distributed lag nonlinear models (Mork and Wilson, 2022) <doi:10.1093/biostatistics/kxaa051>; heterogeneous DLMs (Mork, et. al., 2024) <doi:10.1080/01621459.2023.2258595>; monotone DLMs (Mork and Wilson, 2024) <doi:10.1214/23-BA1412>. The package also includes visualization tools and a shiny interface to check model convergence and to help interpret results.
Calculates distances from point locations to features. The usual approach for eg. resource selection function analyses is to generate a complete distance to features surface then sample it with your observed and random points. Since these raster based approaches can be pretty costly with large areas, and often lead to memory issues in R, the distanceto package opts to compute these distances using efficient, vector based approaches. As a helper, there's a decidedly low-res raster based approach for visually inspecting your region's distance surface. But the workhorse is distance_to.
This package provides a key-value dictionary data structure based on R6 class which is designed to be similar usages with other languages dictionary (e.g. Python') with reference semantics and extendabilities by R6.
Data package for dartR'. Provides data sets to run examples in dartR'. This was necessary due to the size limit imposed by CRAN'. The data in dartR.data is needed to run the examples provided in the dartR functions. All available data sets are either based on actual data (but reduced in size) and/or simulated data sets to allow the fast execution of examples and demonstration of the functions.
This package provides methods to estimate the optimal treatment regime among all linear regimes via smoothed estimation methods, and construct element-wise confidence intervals for the optimal linear treatment regime vector, as well as the confidence interval for the optimal value via wild bootstrap procedures, if the population follows treatments recommended by the optimal linear regime. See more details in: Wu, Y. and Wang, L. (2021), "Resampling-based Confidence Intervals for Model-free Robust Inference on Optimal Treatment Regimes", Biometrics, 77: 465รข 476, <doi:10.1111/biom.13337>.
Plots dependency logos from a set of aligned input sequences.
This package provides a software package for using DEXi models. DEXi models are hierarchical qualitative multi-criteria decision models developed according to the method DEX (Decision EXpert, <https://dex.ijs.si/documentation/DEX_Method/DEX_Method.html>), using the program DEXi (<https://kt.ijs.si/MarkoBohanec/dexi.html>) or DEXiWin (<https://dex.ijs.si/dexisuite/dexiwin.html>). A typical workflow with DEXiR consists of: (1) reading a .dxi file, previously made using the DEXi software (function read_dexi()), (2) making a data frame containing input values of one or more decision alternatives, (3) evaluating those alternatives (function evaluate()), (4) analyzing alternatives (selective_explanation(), plus_minus(), compare_alternatives()), (5) drawing charts. DEXiR is restricted to using models produced externally by the DEXi software and does not provide functionality for creating and/or editing DEXi models directly in R'.
This package provides a general-purpose computational engine for data analysis, drake rebuilds intermediate data objects when their dependencies change, and it skips work when the results are already up to date. Not every execution starts from scratch, there is native support for parallel and distributed computing, and completed projects have tangible evidence that they are reproducible. Extensive documentation, from beginner-friendly tutorials to practical examples and more, is available at the reference website <https://docs.ropensci.org/drake/> and the online manual <https://books.ropensci.org/drake/>.
This package provides curated early warning data on landslides in Sri Lanka during the Ditwah storm. It includes structured, machine-readable tidy dataset. This is developed for education and research purposes.
Implementation of the Decorrelated Local Linear estimator proposed in <arxiv:1907.12732>. It constructs the confidence interval for the derivative of the function of interest under the high-dimensional sparse additive model.
This package provides a comprehensive framework for early epidemic detection through school absenteeism surveillance. The package offers three core functionalities: (1) simulation of population structures, epidemic spread, and resulting school absenteeism patterns; (2) implementation of surveillance models that generate alerts for impending epidemics based on absenteeism data and (3) evaluation of alert timeliness and accuracy through alert time quality metrics to optimize model parameters. These tools enable public health officials and researchers to develop and assess early warning systems before implementation. Methods are based on research published in Vanderkruk et al. (2023) <doi:10.1186/s12889-023-15747-z> and Ward et al. (2019) <doi:10.1186/s12889-019-7521-7>.
Individual gene expression patterns are encoded into a series of eigenvector patterns ('WGCNA package). Using the framework of linear model-based differential expression comparisons ('limma package), time-course expression patterns for genes in different conditions are compared and analyzed for significant pattern changes. For reference, see: Greenham K, Sartor RC, Zorich S, Lou P, Mockler TC and McClung CR. eLife. 2020 Sep 30;9(4). <doi:10.7554/eLife.58993>.
Create high-performance clinical reporting tables (TLGs) from ADaM-like inputs. The package provides a consistent, programmatic API to generate common tables such as demographics, adverse event incidence, and laboratory summaries, using data.table for fast aggregation over large populations. Functions support flexible target-variable selection, stratification by treatment, and customizable summary statistics, and return tidy, machine-readable results ready to render with downstream table/formatting packages in analysis pipelines.
This package provides a dibble that implements data cubes (derived from dimensional tibble'), and allows broadcasting by dimensional names.
This package provides a domain-specific language for specifying translating recursions into dynamic-programming algorithms. See <https://en.wikipedia.org/wiki/Dynamic_programming> for a description of dynamic programming.
This package implements fast Monte Carlo simulations for goodness-of-fit (GOF) tests for discrete distributions. This includes tests based on the Chi-squared statistic, the log-likelihood-ratio (G^2) statistic, the Freeman-Tukey (Hellinger-distance) statistic, the Kolmogorov-Smirnov statistic, the Cramer-von Mises statistic as described in Choulakian, Lockhart and Stephens (1994) <doi:10.2307/3315828>, and the root-mean-square statistic, see Perkins, Tygert, and Ward (2011) <doi:10.1016/j.amc.2011.03.124>.
Improves the balance of optimal matching with near-fine balance by giving penalties on the unbalanced covariates with the unbalanced directions. Many directional penalties can also be viewed as Lagrange multipliers, pushing a matched sample in the direction of satisfying a linear constraint that would not be satisfied without penalization. Yu and Rosenbaum (2019) <doi:10.1111/biom.13098>.