Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a dataframe-friendly implementation of ComBat Harmonization which uses an empirical Bayesian framework to remove batch effects. Johnson WE & Li C (2007) <doi:10.1093/biostatistics/kxj037> "Adjusting batch effects in microarray expression data using empirical Bayes methods." Fortin J-P, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, Cooper C, Fava M, McGrath PJ, McInnes M, Phillips ML, Trivedi MH, Weissman MM, & Shinohara RT (2017) <doi:10.1016/j.neuroimage.2017.11.024> "Harmonization of cortical thickness measurements across scanners and sites." Fortin J-P, Parker D, Tun<e7> B, Watanabe T, Elliott MA, Ruparel K, Roalf DR, Satterthwaite TD, Gur RC, Gur RE, Schultz RT, Verma R, & Shinohara RT (2017) <doi:10.1016/j.neuroimage.2017.08.047> "Harmonization of multi-site diffusion tensor imaging data.".
Interconverts between ordered lists and compact string notation. Useful for capturing code lists, and pair-wise codes and decodes, for text storage. Analogous to factor levels and labels. Generics encode() and decode() perform interconversion, while codes() and decodes() extract components of an encoding. The function encoded() checks whether something is interpretable as an encoding. If a vector has an encoded guide attribute, as_factor() uses it to coerce to factor.
Calculates the (approximate) effective number of clusters for a regression model, as described in Carter, Schnepel, and Steigerwald (2017) <doi:10.1162/REST_a_00639>. The effective number of clusters is a statistic to assess the reliability of asymptotic inference when sampling or treatment assignment is clustered. Methods are implemented for stats::lm(), plm::plm(), and fixest::feols(). There is also a formula method.
This package provides a shiny-based front end (the ExPanD app) and a set of functions for exploratory data analysis. Run as a web-based app, ExPanD enables users to assess the robustness of empirical evidence without providing them access to the underlying data. You can export a notebook containing the analysis of ExPanD and/or use the functions of the package to support your exploratory data analysis workflow. Refer to the vignettes of the package for more information on how to use ExPanD and/or the functions of this package.
This package provides statistical and visualization tools for the analysis of demographic indicators, and spatio-temporal behavior and characterization of outbreaks of vector-borne diseases (VBDs) in Colombia. It implements travel times estimated in Bravo-Vega C., Santos-Vega M., & Cordovez J.M. (2022), and the endemic channel method (Bortman, M. (1999) <https://iris.paho.org/handle/10665.2/8562>).
Biotracers and stomach content analyses are combined in a Bayesian hierarchical model to estimate a probabilistic topology matrix (all trophic link probabilities) and a diet matrix (all diet proportions). The package relies on the JAGS software and the jagsUI package to run a Markov chain Monte Carlo approximation of the different variables.
This package contains match results from seven European men's football leagues, namely Premier League (England), Ligue 1 (France), Bundesliga (Germany), Serie A (Italy), Primera Division (Spain), Eredivisie (The Netherlands), Super Lig (Turkey). Includes Seasons 2010/2011 until 2019/2020 and a set of interesting covariates. Can be used all purposes.
This package provides a data package containing a database of epidemiological parameters. It stores the data for the epiparameter R package. Epidemiological parameter estimates are extracted from the literature.
An implementation of 1) the tail pairwise dependence matrix (TPDM) as described in Jiang & Cooley (2020) <doi:10.1175/JCLI-D-19-0413.1> 2) the extremal pattern index (EPI) as described in Szemkus & Friederichs ('Spatial patterns and indices for heatwave and droughts over Europe using a decomposition of extremal dependency'; submitted to ASCMO 2023).
This package provides a data transformation method which takes into account the special property of scale non-invariance with a breakpoint at 1 of the Euclidean distance.
This package provides a set of functions to solve Erlang-C model. The Erlang C formula was invented by the Danish Mathematician A.K. Erlang and is used to calculate the number of advisors and the service level.
Calculates exact tests and confidence intervals for one-sample binomial and one- or two-sample Poisson cases (see Fay (2010) <doi:10.32614/rj-2010-008>).
Exploratory principal component analysis for large-scale dataset, including sparse principal component analysis and sparse matrix approximation.
An alternative to Exploratory Factor Analysis (EFA) for metrical data in R. Drawing on characteristics of classical test theory, Exploratory Likert Scaling (ELiS) supports the user exploring multiple one-dimensional data structures. In common research practice, however, EFA remains the go-to method to uncover the (underlying) structure of a data set. Orthogonal dimensions and the potential of overextraction are often accepted as side effects. As described in Müller-Schneider (2001) <doi:10.1515/zfsoz-2001-0404>), ELiS confronts these problems. As a result, elisr provides the platform to fully exploit the exploratory potential of the multiple scaling approach itself.
Download data from the European Social Survey directly from their website <http://www.europeansocialsurvey.org/>. There are two families of functions that allow you to download and interactively check all countries and rounds available.
Runs the eDITH (environmental DNA Integrating Transport and Hydrology) model, which implements a mass balance of environmental DNA (eDNA) transport at a river network scale coupled with a species distribution model to obtain maps of species distribution. eDITH can work with both eDNA concentration (e.g., obtained via quantitative polymerase chain reaction) or metabarcoding (read count) data. Parameter estimation can be performed via Bayesian techniques (via the BayesianTools package) or optimization algorithms. An interface to the DHARMa package for posterior predictive checks is provided. See Carraro and Altermatt (2024) <doi:10.1111/2041-210X.14317> for a package introduction; Carraro et al. (2018) <doi:10.1073/pnas.1813843115> and Carraro et al. (2020) <doi:10.1038/s41467-020-17337-8> for methodological details.
Includes R functions for the estimation of tumor clones percentages for both snp data and (whole) genome sequencing data. See Cheng, Y., Dai, J. Y., Paulson, T. G., Wang, X., Li, X., Reid, B. J., & Kooperberg, C. (2017). Quantification of multiple tumor clones using gene array and sequencing data. The Annals of Applied Statistics, 11(2), 967-991, <doi:10.1214/17-AOAS1026> for more details.
Interface to Eurostatâ s API (SDMX 2.1) with fast data.table-based import of data, labels, and metadata. On top of the core functionality, data search and data description/comparison functions are also provided. Use <https://github.com/alekrutkowski/eurodata_codegen> â a point-and-click app for rapid and easy generation of richly-commented R code â to import a Eurostat dataset or its subset (based on the eurodata::importData() function).
Equating of multiple forms using Item Response Theory (IRT) methods (Battauz M. (2017) <doi:10.1007/s11336-016-9517-x>, Battauz and Leoncio (2023) <doi:10.1177/01466216231151702>, Haberman S. J. (2009) <doi:10.1002/j.2333-8504.2009.tb02197.x>).
Generates interactive circle plots with the nodes around the circumference and linkages between the connected nodes using hierarchical edge bundling via the D3 JavaScript library. See <http://d3js.org/> for more information on D3.
We introduced a novel ensemble-based explainable machine learning model using Model Confidence Set (MCS) and two stage Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm. The model combined the predictive capabilities of different machine-learning models and integrates the interpretability of explainability methods. To develop the proposed algorithm, a two-stage Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) framework was employed. The package has been developed using the algorithm of Paul et al. (2023) <doi:10.1007/s40009-023-01218-x> and Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.
This package contains several functions for equivalence testing and practical significance testing. First, the tsti() command provides an automatic computation of three-sided testing results for a given estimate, standard error, and region of practical equivalence. For details, see Goeman, Solari, & Stijnen (2010) <doi:10.1002/sim.4002> and Isager & Fitzgerald (2024) <doi:10.31234/osf.io/8y925>. Second, the lddtest() command performs logarithmic density discontinuity equivalence testing for regression discontinuity designs. For reference, see Fitzgerald (2025) <doi:10.31222/osf.io/2dgrp_v1>.
DNA methylation (6mA) is a major epigenetic process by which alteration in gene expression took place without changing the DNA sequence. Predicting these sites in-vitro is laborious, time consuming as well as costly. This EpiSemble package is an in-silico pipeline for predicting DNA sequences containing the 6mA sites. It uses an ensemble-based machine learning approach by combining Support Vector Machine (SVM), Random Forest (RF) and Gradient Boosting approach to predict the sequences with 6mA sites in it. This package has been developed by using the concept of Chen et al. (2019) <doi:10.1093/bioinformatics/btz015>.
This package provides a meta-package that installs and loads a set of packages from easystats ecosystem in a single step. This collection of packages provide a unifying and consistent framework for statistical modeling, visualization, and reporting. Additionally, it provides articles targeted at instructors for teaching easystats', and a dashboard targeted at new R users for easily conducting statistical analysis by accessing summary results, model fit indices, and visualizations with minimal programming.