Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to parse simple .ini configuration files to an structured list. Users can manipulate this resulting list with lapply() functions. This same structured list can be used to write back to file after modifications.
This package provides R bindings to the Sundown Markdown rendering library (https://github.com/vmg/sundown). Markdown is a plain-text formatting syntax that can be converted to XHTML or other formats.
This is a package for reading, manipulating, writing and plotting spatiotemporal arrays (raster and vector data cubes) in R, using GDAL bindings provided by sf, and NetCDF bindings by ncmeta and RNetCDF.
Estimate quantile regression (QR) and composite quantile regression (cqr) and with adaptive lasso penalty using interior point (IP), majorize and minimize (MM), coordinate descent (CD), and alternating direction method of multipliers algorithms (ADMM).
This package provides an improved implementation (based on k-nearest neighbors) of the density peak clustering algorithm, originally described by Alex Rodriguez and Alessandro Laio (Science, 2014 vol. 344). It can handle large datasets (> 100,000 samples) very efficiently.
This package provides a collection of efficient, vectorized algorithms for the creation and investigation of magic squares and hypercubes, including a variety of functions for the manipulation and analysis of arbitrarily dimensioned arrays.
This package provides methods to create, store, access, and manipulate large matrices. Matrices are allocated to shared memory and may use memory-mapped files.
This package contains a number of comparative "phylogenetic" methods, mostly focusing on analysing diversification and character evolution. Contains implementations of "BiSSE" (Binary State Speciation and Extinction) and its unresolved tree extensions, "MuSSE" (Multiple State Speciation and Extinction), "QuaSSE", "GeoSSE", and "BiSSE-ness" Other included methods include Markov models of discrete and continuous trait evolution and constant rate speciation and extinction.
This package allows for fast, correct, consistent, portable, as well as convenient character string/text processing in every locale and any native encoding. Owing to the use of the ICU library, the package provides R users with platform-independent functions known to Java, Perl, Python, PHP, and Ruby programmers. Among available features there are: pattern searching (e.g. via regular expressions), random string generation, string collation, transliteration, concatenation, date-time formatting and parsing, etc.
The package provides estimators of the mode of univariate unimodal (and sometimes multimodal) data and values of the modes of usual probability distributions.
The purpose of this package is to factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions is made available with R_RegisterCCallable().
This package can be used to conduct post hoc analyses of resampling results generated by models. For example, if two models are evaluated with the root mean squared error (RMSE) using 10-fold cross-validation, there are 10 paired statistics. These can be used to make comparisons between models without involving a test set.
The r-nleqslv package solves a system of nonlinear equations using a Broyden or a Newton method with a choice of global strategies such as line search and trust region. There are options for using a numerical or user supplied Jacobian, for specifying a banded numerical Jacobian and for allowing a singular or ill-conditioned Jacobian.
This is a package to infer transmission trees from a dated phylogeny. It includes methods to simulate and analyze outbreaks. The methodology is described in Didelot et al. (2014) and Didelot et al. (2017).
This package provides tools to create and modify network objects. The network class can represent a range of relational data types, and supports arbitrary vertex/edge/graph attributes.
This package provides three functions for dealing with dates: parse_iso_8601 recognizes and parses all valid ISO 8601 date and time formats, parse_date parses dates in unspecified formats, and format_iso_8601 formats a date in ISO 8601 format.
This package provides Cramer-Von Mises and Anderson-Darling tests of goodness-of-fit for continuous univariate distributions, using efficient algorithms.
This package provides a set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a log or a logit transformation, respectively.
This is software accompanying the book 'Applied Smoothing Techniques for Data Analysis---The Kernel Approach with S-Plus Illustrations', Oxford University Press. It provides smoothing methods for nonparametric regression and density estimation
This package contains a list of functional time series, sliced functional time series, and functional data sets. Functional time series is a special type of functional data observed over time. Sliced functional time series is a special type of functional time series with a time variable observed over time.
Download and install R packages stored in GitHub, BitBucket, or plain subversion or git repositories. This package is a lightweight replacement of the install_* functions in the devtools package. Indeed most of the code was copied over from devtools.
This package implements an R interface to the Leiden algorithm, an iterative community detection algorithm on networks. The algorithm is designed to converge to a partition in which all subsets of all communities are locally optimally assigned, yielding communities guaranteed to be connected. The implementation proves to be fast, scales well, and can be run on graphs of millions of nodes (as long as they can fit in memory).
This package provides classes and functions to create and summarize different types of resampling objects (e.g. bootstrap, cross-validation).
This package implements affinity propagation clustering introduced by Frey and Dueck (2007). The package further provides leveraged affinity propagation and an algorithm for exemplar-based agglomerative clustering that can also be used to join clusters obtained from affinity propagation. Various plotting functions are available for analyzing clustering results.