Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for performing taxonomic assignment based on phylogeny using pplacer and clst.
The package CellBarcode performs Cellular DNA Barcode analysis. It can handle all kinds of DNA barcodes, as long as the barcode is within a single sequencing read and has a pattern that can be matched by a regular expression. \codeCellBarcode can handle barcodes with flexible lengths, with or without UMI (unique molecular identifier). This tool also can be used for pre-processing some amplicon data such as CRISPR gRNA screening, immune repertoire sequencing, and metagenome data.
Cross-Species Investigation and Analysis (CoSIA) is a package that provides researchers with an alternative methodology for comparing across species and tissues using normal wild-type RNA-Seq Gene Expression data from Bgee. Using RNA-Seq Gene Expression data, CoSIA provides multiple visualization tools to explore the transcriptome diversity and variation across genes, tissues, and species. CoSIA uses the Coefficient of Variation and Shannon Entropy and Specificity to calculate transcriptome diversity and variation. CoSIA also provides additional conversion tools and utilities to provide a streamlined methodology for cross-species comparison.
This package is an extension to CellNOptR. It contains additional functionality needed to simulate and train a prior knowledge network to experimental data using constrained fuzzy logic (cFL, rather than Boolean logic as is the case in CellNOptR). Additionally, this package will contain functions to use for the compilation of multiple optimization results (either Boolean or cFL).
This package provides support for automation and visualization of flow cytometry data analysis pipelines. In the current state, the package focuses on the preprocessing and quality control part. The framework is based on two main S4 classes, i.e. CytoPipeline and CytoProcessingStep. The pipeline steps are linked to corresponding R functions - that are either provided in the CytoPipeline package itself, or exported from a third party package, or coded by the user her/himself. The processing steps need to be specified centrally and explicitly using either a json input file or through step by step creation of a CytoPipeline object with dedicated methods. After having run the pipeline, obtained results at all steps can be retrieved and visualized thanks to file caching (the running facility uses a BiocFileCache implementation). The package provides also specific visualization tools like pipeline workflow summary display, and 1D/2D comparison plots of obtained flowFrames at various steps of the pipeline.
Co-expression analysis for expression profiles arising from high-throughput sequencing data. Feature (e.g., gene) profiles are clustered using adapted transformations and mixture models or a K-means algorithm, and model selection criteria (to choose an appropriate number of clusters) are provided.
Clonal cell groups share common mutations within cancer, precancer, and even clinically normal appearing tissues. The frequency and location of these mutations may predict prognosis and cancer risk. It has also been well established that certain genomic regions have increased sensitivity to acquiring mutations. Mutation-sensitive genomic regions may therefore serve as markers for predicting cancer risk. This package contains multiple functions to establish significantly mutated hotspots, compare hotspot mutation burden between samples, and perform exploratory data analysis of the correlation between hotspot mutation burden and personal risk factors for cancer, such as age, gender, and history of carcinogen exposure. This package allows users to identify robust genomic markers to help establish cancer risk.
ClusterJudge implements the functions, examples and other software published as an algorithm by Gibbons, FD and Roth FP. The article is called "Judging the Quality of Gene Expression-Based Clustering Methods Using Gene Annotation" and it appeared in Genome Research, vol. 12, pp1574-1581 (2002). See package?ClusterJudge for an overview.
Spatial homogeneous regions (SHRs) in tissues are domains that are homogenous with respect to cell type composition. We present a method for identifying SHRs using spatial transcriptomics data, and demonstrate that it is efficient and effective at finding SHRs for a wide variety of tissue types. concordex relies on analysis of k-nearest-neighbor (kNN) graphs. The tool is also useful for analysis of non-spatial transcriptomics data, and can elucidate the extent of concordance between partitions of cells derived from clustering algorithms, and transcriptomic similarity as represented in kNN graphs.
ChIPanalyser is a package to predict and understand TF binding by utilizing a statistical thermodynamic model. The model incorporates 4 main factors thought to drive TF binding: Chromatin State, Binding energy, Number of bound molecules and a scaling factor modulating TF binding affinity. Taken together, ChIPanalyser produces ChIP-like profiles that closely mimic the patterns seens in real ChIP-seq data.
cfDNA fragments carry important features for building cancer sample classification ML models, such as fragment size, and fragment end motif etc. Analyzing and visualizing fragment size metrics, as well as other biological features in a curated, standardized, scalable, well-documented, and reproducible way might be time intensive. This package intends to resolve these problems and simplify the process. It offers two sets of functions for cfDNA feature characterization and visualization.
An annotation package for use with ChemmineR. This package includes data from DrugBank. DUD data can be downloaded using the "DUD()" function in ChemmineR.
This package provides a curated dataset of publicly available ChIP-sequencing of transcription factors, chromatin remodelers and histone modifications in the 3T3-L1 pre-adipocyte cell line. The package document the data collection, pre-processing and processing of the data. In addition to the documentation, the package contains the scripts that was used to generated the data.
Faster implementation of CRLMM specific to SNP 5.0 and 6.0 arrays, as well as a copy number tool specific to 5.0, 6.0, and Illumina platforms.
This package provides a user-friendly interface to map on-targets and off-targets of CRISPR gRNA spacer sequences using bowtie. The alignment is fast, and can be performed using either commonly-used or custom CRISPR nucleases. The alignment can work with any reference or custom genomes. Both DNA- and RNA-targeting nucleases are supported.
The package curatedPCaData offers a selection of annotated prostate cancer datasets featuring multiple omics, manually curated metadata, and derived downstream variables. The studies are offered as MultiAssayExperiment (MAE) objects via ExperimentHub, and comprise of clinical characteristics tied to gene expression, copy number alteration and somatic mutation data. Further, downstream features computed from these multi-omics data are offered. Multiple vignettes help grasp characteristics of the various studies and provide example exploratory and meta-analysis of leveraging the multiple studies provided here-in.
This package contains the data used in the vignette of the cnvGSA package.
Variance Stabilized Transformation of Read Counts derived from Bgee RNA-Seq Expression Data. Expression Data includes annotations and is across 6 species (Homo sapiens, Mus musculus, Rattus norvegicus, Danio rerio, Drosophila melanogaster, and Caenorhabditis elegans) and across more than 132 tissues. The data is represented as a RData files and is available in ExperimentHub.
clevRvis provides a set of visualization techniques for clonal evolution. These include shark plots, dolphin plots and plaice plots. Algorithms for time point interpolation as well as therapy effect estimation are provided. Phylogeny-aware color coding is implemented. A shiny-app for generating plots interactively is additionally provided.
This package contains infrastructure for benchmarking analysis methods and access to single cell mixture benchmarking data. It provides a framework for organising analysis methods and testing combinations of methods in a pipeline without explicitly laying out each combination. It also provides utilities for sampling and filtering SingleCellExperiment objects, constructing lists of functions with varying parameters, and multithreaded evaluation of analysis methods.
CPSM provides a comprehensive computational pipeline for predicting survival probability and risk groups in cancer patients. The package includes steps for data preprocessing, training/test split, and normalization. It enables feature selection using univariate survival analysis and computes a LASSO-based prognostic index (PI) score. CPSM supports the development of predictive models using various feature sets and offers a suite of visualization tools, including survival curves based on predicted probabilities, barplots for predicted mean and median survival times, KM plots overlaid with individual survival predictions, and nomograms for estimating 1-, 3-, 5-, and 10-year survival probabilities. This makes CPSM a versatile tool for survival analysis in cancer research.
An approach to filter out and/or identify phytoplankton cells from all particles measured via flow cytometry pigment and cell complexity information. It does this using a sequence of one-dimensional gates on pre-defined channels measuring certain pigmentation and complexity. The package is especially tuned for cyanobacteria, but will work fine for phytoplankton communities where there is at least one cell characteristic that differentiates every phytoplankton in the community.
The CTexploreR package re-defines the list of Cancer Testis/Germline (CT) genes. It is based on publicly available RNAseq databases (GTEx, CCLE and TCGA) and summarises CT genes main characteristics. Several visualisation functions allow to explore their expression in different types of tissues and cancer cells, or to inspect the methylation status of their promoters in normal tissues.
ClustIRR analyzes repertoires of B- and T-cell receptors. It starts by identifying communities of immune receptors with similar specificities, based on the sequences of their complementarity-determining regions (CDRs). Next, it employs a Bayesian probabilistic models to quantify differential community occupancy (DCO) between repertoires, allowing the identification of expanding or contracting communities in response to e.g. infection or cancer treatment.