Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Discriminant Analysis (DA) for evolutionary inference (Qin, X. et al, 2020, <doi:10.22541/au.159256808.83862168>), especially for population genetic structure and community structure inference. This package incorporates the commonly used linear and non-linear, local and global supervised learning approaches (discriminant analysis), including Linear Discriminant Analysis of Kernel Principal Components (LDAKPC), Local (Fisher) Linear Discriminant Analysis (LFDA), Local (Fisher) Discriminant Analysis of Kernel Principal Components (LFDAKPC) and Kernel Local (Fisher) Discriminant Analysis (KLFDA). These discriminant analyses can be used to do ecological and evolutionary inference, including demography inference, species identification, and population/community structure inference.
Simplifies and automates the process of exploring and merging data from relational databases. This package allows users to discover table relationships, create a map of all possible joins, and generate executable plans to merge data based on a structured metadata framework.
Allows you to define rules which can be used to verify a given dataset. The package acts as a thin wrapper around more powerful data packages such as dplyr', data.table', arrow', and DBI ('SQL'), which do the heavy lifting.
This package provides tools for exploring the topography of 3d triangle meshes. The functions were developed with dental surfaces in mind, but could be applied to any triangle mesh of class mesh3d'. More specifically, doolkit allows to isolate the border of a mesh, or a subpart of the mesh using the polygon networks method; crop a mesh; compute basic descriptors (elevation, orientation, footprint area); compute slope, angularity and relief index (Ungar and Williamson (2000) <https://palaeo-electronica.org/2000_1/gorilla/issue1_00.htm>; Boyer (2008) <doi:10.1016/j.jhevol.2008.08.002>), inclination and occlusal relief index or gamma (Guy et al. (2013) <doi:10.1371/journal.pone.0066142>), OPC (Evans et al. (2007) <doi:10.1038/nature05433>), OPCR (Wilson et al. (2012) <doi:10.1038/nature10880>), DNE (Bunn et al. (2011) <doi:10.1002/ajpa.21489>; Pampush et al. (2016) <doi:10.1007/s10914-016-9326-0>), form factor (Horton (1932) <doi:10.1029/TR013i001p00350>), basin elongation (Schum (1956) <doi:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2>), lemniscate ratio (Chorley et al; (1957) <doi:10.2475/ajs.255.2.138>), enamel-dentine distance (Guy et al. (2015) <doi:10.1371/journal.pone.0138802>; Thiery et al. (2017) <doi:10.3389/fphys.2017.00524>), absolute crown strength (Schwartz et al. (2020) <doi:10.1098/rsbl.2019.0671>), relief rate (Thiery et al. (2019) <doi:10.1002/ajpa.23916>) and area-relative curvature; draw cumulative profiles of a topographic variable; and map a variable over a 3d triangle mesh.
This package provides functions providing an easy and intuitive way for fitting and clusters data using the Mixture of Unigrams models by means the Expectation-Maximization algorithm (Nigam, K. et al. (2000). <doi:10.1023/A:1007692713085>), Mixture of Dirichlet-Multinomials estimated by Gradient Descent (Anderlucci, Viroli (2020) <doi:10.1007/s11634-020-00399-3>) and Deep Mixture of Multinomials whose estimates are obtained with Gibbs sampling scheme (Viroli, Anderlucci (2020) <doi:10.1007/s11222-020-09989-9>). There are also functions for graphical representation of clusters obtained.
Calculates expected values, variance, different moments (kth moment, truncated mean), stop-loss, mean excess loss, Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) as well as some density and cumulative (survival) functions of continuous, discrete and compound distributions. This package also includes a visual Shiny component to enable students to visualize distributions and understand the impact of their parameters. This package is intended to expand the stats package so as to enable students to develop an intuition for probability.
Analysis of preprocessed dramatic texts, with respect to literary research. The package provides functions to analyze and visualize information about characters, stage directions, the dramatic structure and the text itself. The dramatic texts are expected to be in CSV format, which can be installed from within the package, sample texts are provided. The package and the reasoning behind it are described in Reiter et al. (2017) <doi:10.18420/in2017_119>.
Generate reports that enable quick visual review of temporal shifts in record-level data. Time series plots showing aggregated values are automatically created for each data field (column) depending on its contents (e.g. min/max/mean values for numeric data, no. of distinct values for categorical data), as well as overviews for missing values, non-conformant values, and duplicated rows. The resulting reports are shareable and can contribute to forming a transparent record of the entire analysis process. It is designed with Electronic Health Records in mind, but can be used for any type of record-level temporal data (i.e. tabular data where each row represents a single "event", one column contains the "event date", and other columns contain any associated values for the event).
Access diverse ggplot2'-compatible color palettes for simplified data visualization.
Explore neural networks in a layer oriented way, the framework is intended to give the user total control of the internals of a net without much effort. Use classes like PerceptronLayer to create a layer of Percetron neurons, and specify how many you want. The package does all the tricky stuff internally leaving you focused in what you want. I wrote this package during a neural networks course to help me with the problem set.
An add-on package to DImodels for the fitting of biodiversity and ecosystem function relationship study data with multiple ecosystem function responses and/or time points. This package uses the multivariate and repeated measures Diversity-Interactions (DI) methods developed by Kirwan et al. (2009) <doi:10.1890/08-1684.1>, Finn et al. (2013) <doi:10.1111/1365-2664.12041>, and Dooley et al. (2015) <doi:10.1111/ele.12504>.
This package provides a Graphical User Interface (GUI) to import, save, detrend and perform standard tree-ring analyses. The interactive detrending allows the user to check how well the detrending curve fits each time-series and change it when needed.
This package provides a decorator is a function that receives a function, extends its behaviour, and returned the altered function. Any caller that uses the decorated function uses the same interface as it were the original, undecorated function. Decorators serve two primary uses: (1) Enhancing the response of a function as it sends data to a second component; (2) Supporting multiple optional behaviours. An example of the first use is a timer decorator that runs a function, outputs its execution time on the console, and returns the original function's result. An example of the second use is input type validation decorator that during running time tests whether the caller has passed input arguments of a particular class. Decorators can reduce execution time, say by memoization, or reduce bugs by adding defensive programming routines.
Identification of hub genes in a gene co-expression network from gene expression data. The differential network analysis for two contrasting conditions leads to the identification of various types of hubs like Housekeeping, Unique to stress (Disease) and Unique to control (Normal) hub genes.
This package provides mean squared error (MSE) and plot the kernel densities related to extreme value distributions with their estimated values. By using Gumbel and Weibull Kernel. See Salha et al. (2014) <doi:10.4236/ojs.2014.48061> and Khan and Akbar (2021) <doi:10.4236/ojs.2021.112018 >.
This package provides a collection of functions to preprocess data and organize them in a format amenable to use by chevron.
We offer an implementation of the series representation put forth in "A series representation for multidimensional Rayleigh distributions" by Wiegand and Nadarajah <DOI: 10.1002/dac.3510>. Furthermore we have implemented an integration approach proposed by Beaulieu et al. for 3 and 4-dimensional Rayleigh densities (Beaulieu, Zhang, "New simplest exact forms for the 3D and 4D multivariate Rayleigh PDFs with applications to antenna array geometrics", <DOI: 10.1109/TCOMM.2017.2709307>).
Models for analyzing site occupancy and count data models with detection error, including single-visit based models (Lele et al. 2012 <doi:10.1093/jpe/rtr042>, Moreno et al. 2010 <doi:10.1890/09-1073.1>, Solymos et al. 2012 <doi:10.1002/env.1149>, Denes et al. 2016 <doi:10.1111/1365-2664.12818>), conditional distance sampling and time-removal models (QPAD) (Solymos et al. 2013 <doi:10.1111/2041-210X.12106>, Solymos et al. 2018 <doi:10.1650/CONDOR-18-32.1>), and single bin QPAD (SQPAD) models (Lele & Solymos 2025). Package development was supported by the Alberta Biodiversity Monitoring Institute and the Boreal Avian Modelling Project.
Utilities for converting unstructured electronic prescribing instructions into structured medication data. Extracts drug dose, units, daily dosing frequency and intervals from English-language prescriptions. Based on Karystianis et al. (2015) <doi:10.1186/s12911-016-0255-x>.
Collects libphonenumber jars required for the dialr package.
Distributed estimation method is based on a Laplace factor model to solve the estimates of load and specific variance. The philosophy of the package is described in Guangbao Guo. (2022). <doi:10.1007/s00180-022-01270-z>.
Create a details HTML tag around R objects to place in a Markdown, Rmarkdown and roxygen2 documentation.
It allows to learn the structure of univariate time series, learning parameters and forecasting. Implements a model of Dynamic Bayesian Networks with temporal windows, with collections of linear regressors for Gaussian nodes, based on the introductory texts of Korb and Nicholson (2010) <doi:10.1201/b10391> and Nagarajan, Scutari and Lèbre (2013) <doi:10.1007/978-1-4614-6446-4>.
This package provides a set of functions to quantify the relationship between development rate and temperature and to build phenological models. The package comprises a set of models and estimated parameters borrowed from a literature review in ectotherms. The methods and literature review are described in Rebaudo et al. (2018) <doi:10.1111/2041-210X.12935>, Rebaudo and Rabhi (2018) <doi:10.1111/eea.12693>, and Regnier et al. (2021) <doi:10.1093/ee/nvab115>. An example can be found in Rebaudo et al. (2017) <doi:10.1007/s13355-017-0480-5>.