Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Three games: proton, frequon and regression. Each one is a console-based data-crunching game for younger and older data scientists. Act as a data-hacker and find Slawomir Pietraszko's credentials to the Proton server. In proton you have to solve four data-based puzzles to find the login and password. There are many ways to solve these puzzles. You may use loops, data filtering, ordering, aggregation or other tools. Only basics knowledge of R is required to play the game, yet the more functions you know, the more approaches you can try. In frequon you will help to perform statistical cryptanalytic attack on a corpus of ciphered messages. This time seven sub-tasks are pushing the bar much higher. Do you accept the challenge? In regression you will test your modeling skills in a series of eight sub-tasks. Try only if ANOVA is your close friend. It's a part of Beta and Bit project. You will find more about the Beta and Bit project at <https://github.com/BetaAndBit/Charts>.
Utility functions for large-scale data. For now, package bigutilsr mainly includes functions for outlier detection and unbiased PCA projection.
Specify and fit the Bradley-Terry model, including structured versions in which the parameters are related to explanatory variables through a linear predictor and versions with contest-specific effects, such as a home advantage.
Tutorials for statistics, aimed at biological scientists. Subjects range from basic descriptive statistics through to complex linear modelling. The tutorials include text, videos, interactive coding exercises and multiple choice quizzes. The package also includes 19 datasets which are used in the tutorials.
This package provides the functions for Brunner-Munzel test and permuted Brunner-Munzel test, which enable to use formula, matrix, and table as argument. These functions are based on Brunner and Munzel (2000) <doi:10.1002/(SICI)1521-4036(200001)42:1%3C17::AID-BIMJ17%3E3.0.CO;2-U> and Neubert and Brunner (2007) <doi:10.1016/j.csda.2006.05.024>, and are written with FORTRAN.
Finds the best block diagonal matrix approximation of a symmetric matrix. This can be exploited for divisive hierarchical clustering using singular vectors, named HC-SVD. The method is described in Bauer (202Xa) <doi:10.48550/arXiv.2308.06820>.
Perform record linkage on streaming files using recursive Bayesian updating.
This package provides tools to facilitate the access and processing of data from the Central Bank of Brazil API. The package allows users to retrieve economic and financial data, transforming them into usable tabular formats for further analysis. The data is obtained from the Central Bank of Brazil API: <https://api.bcb.gov.br/dados/serie/bcdata.sgs.series_code/dados?formato=json&dataInicial=start_date&dataFinal=end_date>.
This package provides tools for the calculation of common biodiversity indices from count data. Additionally, it incorporates bootstrapping techniques to generate multiple samples, facilitating the estimation of confidence intervals around these indices. Furthermore, the package allows for the exploration of how variation in these indices changes with differing numbers of sites, making it a useful tool with which to begin an ecological analysis. Methods are based on the following references: Chao et al. (2014) <doi:10.1890/13-0133.1>, Chao and Colwell (2022) <doi:10.1002/9781119902911.ch2>, Hsieh, Ma,` and Chao (2016) <doi:10.1111/2041-210X.12613>.
The sample size according to the Bethel's procedure.
Flags and checks occurrence data that are in Darwin Core format. The package includes generic functions and data as well as some that are specific to bees. This package is meant to build upon and be complimentary to other excellent occurrence cleaning packages, including bdc and CoordinateCleaner'. This package uses datasets from several sources and particularly from the Discover Life Website, created by Ascher and Pickering (2020). For further information, please see the original publication and package website. Publication - Dorey et al. (2023) <doi:10.1101/2023.06.30.547152> and package website - Dorey et al. (2023) <https://github.com/jbdorey/BeeBDC>.
Intended to facilitate acoustic analysis of (animal) sound propagation experiments, which typically aim to quantify changes in signal structure when transmitted in a given habitat by broadcasting and re-recording animal sounds at increasing distances. The package offers a workflow with functions to prepare the data set for analysis as well as to calculate and visualize several degradation metrics, including blur ratio, signal-to-noise ratio, excess attenuation and envelope correlation among others (Dabelsteen et al 1993 <doi:10.1121/1.406682>).
Search and download data from the Swiss Federal Statistical Office (BFS) APIs <https://www.bfs.admin.ch/>.
The function estimates the hazard function non parametrically from a survival object (possibly adjusted for covariates). The smoothed estimate is based on B-splines from the perspective of generalized linear mixed models. Left truncated and right censoring data are allowed. The package is based on the work in Rebora P (2014) <doi:10.32614/RJ-2014-028>.
This package provides a computationally-efficient leading-eigenvalue approximation to tail probabilities and quantiles of large quadratic forms, in particular for the Sequence Kernel Association Test (SKAT) used in genomics <doi:10.1002/gepi.22136>. Also provides stochastic singular value decomposition for dense or sparse matrices.
Running and comparing meta-analyses of data with hierarchical Bayesian models in Stan, including convenience functions for formatting data, plotting and pooling measures specific to meta-analysis. This implements many models from Meager (2019) <doi:10.1257/app.20170299>.
Laplace approximations and penalized B-splines are combined for fast Bayesian inference in latent Gaussian models. The routines can be used to fit survival models, especially proportional hazards and promotion time cure models (Gressani, O. and Lambert, P. (2018) <doi:10.1016/j.csda.2018.02.007>). The Laplace-P-spline methodology can also be implemented for inference in (generalized) additive models (Gressani, O. and Lambert, P. (2021) <doi:10.1016/j.csda.2020.107088>). See the associated website for more information and examples.
This package provides functions for Bayesian Data Analysis, with datasets from the book "Bayesian data Analysis (second edition)" by Gelman, Carlin, Stern and Rubin. Not all datasets yet, hopefully completed soon.
Two partially supervised mixture modeling methods: soft-label and belief-based modeling are implemented. For completeness, we equipped the package also with the functionality of unsupervised, semi- and fully supervised mixture modeling. The package can be applied also to selection of the best-fitting from a set of models with different component numbers or constraints on their structures. For detailed introduction see: Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm: Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software <doi:10.18637/jss.v047.i03>.
Collect your data on digital marketing campaigns from bing Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Our recently developed fully robust Bayesian semiparametric mixed-effect model for high-dimensional longitudinal studies with heterogeneous observations can be implemented through this package. This model can distinguish between time-varying interactions and constant-effect-only cases to avoid model misspecifications. Facilitated by spike-and-slab priors, this model leads to superior performance in estimation, identification and statistical inference. In particular, robust Bayesian inferences in terms of valid Bayesian credible intervals on both parametric and nonparametric effects can be validated on finite samples. The Markov chain Monte Carlo algorithms of the proposed and alternative models are efficiently implemented in C++'.
This package provides functions are pre-configured to utilize Bootstrap 5 classes and HTML structures to create Bootstrap-styled HTML quickly and easily. Includes functions for creating common Bootstrap elements such as containers, rows, cols, navbars, etc. Intended to be used with the html5 package. Learn more at <https://getbootstrap.com/>.
Efficient simulation of Brownian semistationary (BSS) processes using the hybrid simulation scheme, as described in Bennedsen, Lunde, Pakkannen (2017) <arXiv:1507.03004v4>, as well as functions to fit BSS processes to data, and functions to estimate the stochastic volatility process of a BSS process.
Usually, it is difficult to plot choropleth maps for Bangladesh in R'. The bangladesh package provides ready-to-use shapefiles for different administrative regions of Bangladesh (e.g., Division, District, Upazila, and Union). This package helps users to draw thematic maps of administrative regions of Bangladesh easily as it comes with the sf objects for the boundaries. It also provides functions allowing users to efficiently get specific area maps and center coordinates for regions. Users can also search for a specific area and calculate the centroids of those areas.