Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Cell surface proteins form a major fraction of the druggable proteome and can be used for tissue-specific delivery of oligonucleotide/cell-based therapeutics. Alternatively spliced surface protein isoforms have been shown to differ in their subcellular localization and/or their transmembrane (TM) topology. Surface proteins are hydrophobic and remain difficult to study thereby necessitating the use of TM topology prediction methods such as TMHMM and Phobius. However, there exists a need for bioinformatic approaches to streamline batch processing of isoforms for comparing and visualizing topologies. To address this gap, we have developed an R package, surfaltr. It pairs inputted isoforms, either known alternatively spliced or novel, with their APPRIS annotated principal counterparts, predicts their TM topologies using TMHMM or Phobius, and generates a customizable graphical output. Further, surfaltr facilitates the prioritization of biologically diverse isoform pairs through the incorporation of three different ranking metrics and through protein alignment functions. Citations for programs mentioned here can be found in the vignette.
scBubbletree is a quantitative method for the visual exploration of scRNA-seq data, preserving key biological properties such as local and global cell distances and cell density distributions across samples. It effectively resolves overplotting and enables the visualization of diverse cell attributes from multiomic single-cell experiments. Additionally, scBubbletree is user-friendly and integrates seamlessly with popular scRNA-seq analysis tools, facilitating comprehensive and intuitive data interpretation.
SpotClean is a computational method to adjust for spot swapping in spatial transcriptomics data. Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific expression, but this is often not the case due to bleed from nearby spots, an artifact we refer to as spot swapping. SpotClean is able to estimate the contamination rate in observed data and decontaminate the spot swapping effect, thus increase the sensitivity and precision of downstream analyses.
srnadiff is a package that finds differently expressed regions from RNA-seq data at base-resolution level without relying on existing annotation. To do so, the package implements the identify-then-annotate methodology that builds on the idea of combining two pipelines approachs differential expressed regions detection and differential expression quantification. It reads BAM files as input, and outputs a list differentially regions, together with the adjusted p-values.
The package offer different classifiers based on comparisons of pair of features (TSP), using various decision rules (e.g., majority wins principle).
scCB2 is an R package implementing CB2 for distinguishing real cells from empty droplets in droplet-based single cell RNA-seq experiments (especially for 10x Chromium). It is based on clustering similar barcodes and calculating Monte-Carlo p-value for each cluster to test against background distribution. This cluster-level test outperforms single-barcode-level tests in dealing with low count barcodes and homogeneous sequencing library, while keeping FDR well controlled.
The spqn package implements spatial quantile normalization (SpQN). This method was developed to remove a mean-correlation relationship in correlation matrices built from gene expression data. It can serve as pre-processing step prior to a co-expression analysis.
The signeR package provides an empirical Bayesian approach to mutational signature discovery. It is designed to analyze single nucleotide variation (SNV) counts in cancer genomes, but can also be applied to other features as well. Functionalities to characterize signatures or genome samples according to exposure patterns are also provided.
sosta (Spatial Omics STructure Analysis) is a package for analyzing spatial omics data to explore tissue organization at the anatomical structure level. It reconstructs anatomically relevant structures based on molecular features or cell types. It further calculates a range of metrics at the structure level to quantitatively describe tissue architecture. The package is designed to integrate with other packages for the analysis of spatial omics data.
seq.hotSPOT provides a resource for designing effective sequencing panels to help improve mutation capture efficacy for ultradeep sequencing projects. Using SNV datasets, this package designs custom panels for any tissue of interest and identify the genomic regions likely to contain the most mutations. Establishing efficient targeted sequencing panels can allow researchers to study mutation burden in tissues at high depth without the economic burden of whole-exome or whole-genome sequencing. This tool was developed to make high-depth sequencing panels to study low-frequency clonal mutations in clinically normal and cancerous tissues.
This is an ExperimentHub package that provides access to the data generated and analyzed in the [smoking-nicotine-mouse](https://github.com/LieberInstitute/smoking-nicotine-mouse/) LIBD project. The datasets contain the expression data of mouse genes, transcripts, exons, and exon-exon junctions across 208 samples from pup and adult mouse brain, and adult blood, that were exposed to nicotine, cigarette smoke, or controls. They also contain relevant metadata of these samples and gene expression features, such QC metrics, if they were used after filtering steps and also if the features were differently expressed in the different experiments.
This package contains two microarray and two RNA-seq datasets that have been preprocessed for use with the sampleClassifier package. The RNA-seq data are derived from Fagerberg et al. (2014) and the Illumina Body Map 2.0 data. The microarray data are derived from Roth et al. (2006) and Ge et al. (2005).
Small RNA sequencing viewer.
This Package utilizes a Semi-parametric Differential Abundance/expression analysis (SDA) method for metabolomics and proteomics data from mass spectrometry as well as single-cell RNA sequencing data. SDA is able to robustly handle non-normally distributed data and provides a clear quantification of the effect size.
Defines a S4 class that is based on SingleCellExperiment. In addition to the usual gene layer the object can also store data for immune genes such as HLAs, Igs and KIRs at allele and functional level. The package is part of a workflow named single-cell ImmunoGenomic Diversity (scIGD), that firstly incorporates allele-aware quantification data for immune genes. This new data can then be used with the here implemented data structure and functionalities for further data handling and data analysis.
saseR is a highly performant and fast framework for aberrant expression and splicing analyses. The main functions are: \itemize\item \code\linkBamtoAspliCounts - Process BAM files to ASpli counts \item \code\linkconvertASpli - Get gene, bin or junction counts from ASpli SummarizedExperiment \item \code\linkcalculateOffsets - Create an offsets assays for aberrant expression or splicing analysis \item \code\linksaseRfindEncodingDim - Estimate the optimal number of latent factors to include when estimating the mean expression \item \code\linksaseRfit - Parameter estimation of the negative binomial distribution and compute p-values for aberrant expression and splicing For information upon how to use these functions, check out our vignette at \urlhttps://github.com/statOmics/saseR/blob/main/vignettes/Vignette.Rmd and the saseR paper: Segers, A. et al. (2023). Juggling offsets unlocks RNA-seq tools for fast scalable differential usage, aberrant splicing and expression analyses. bioRxiv. \urlhttps://doi.org/10.1101/2023.06.29.547014.
Signal-to-Noise applied to Gene Expression Experiments. Signal-to-noise ratios can be used as a proxy for quality of gene expression studies and samples. The SNRs can be calculated on any gene expression data set as long as gene IDs are available, no access to the raw data files is necessary. This allows to flag problematic studies and samples in any public data set.
This is a collection of publically available spatial omics datasets. Where possible we have curated these datasets as either SpatialExperiments, MoleculeExperiments or CytoImageLists and included annotations of the sample characteristics.
Suffix Array Kernel Smoothing (see https://academic.oup.com/bioinformatics/article-abstract/35/20/3944/5418797), or SArKS, identifies sequence motifs whose presence correlates with numeric scores (such as differential expression statistics) assigned to the sequences (such as gene promoters). SArKS smooths over sequence similarity, quantified by location within a suffix array based on the full set of input sequences. A second round of smoothing over spatial proximity within sequences reveals multi-motif domains. Discovered motifs can then be merged or extended based on adjacency within MMDs. False positive rates are estimated and controlled by permutation testing.
Samples large data such that spectral clustering is possible while preserving density information in edge weights. More specifically, given a matrix of coordinates as input, SamSPECTRAL first builds the communities to sample the data points. Then, it builds a graph and after weighting the edges by conductance computation, the graph is passed to a classic spectral clustering algorithm to find the spectral clusters. The last stage of SamSPECTRAL is to combine the spectral clusters. The resulting "connected components" estimate biological cell populations in the data. See the vignette for more details on how to use this package, some illustrations, and simple examples.
SPICEY (SPecificity Index for Coding and Epigenetic activitY) is an R package designed to quantify cell-type specificity in single-cell transcriptomic and epigenomic data, particularly scRNA-seq and scATAC-seq. It introduces two complementary indices: the Gene Expression Tissue Specificity Index (GETSI) and the Regulatory Element Tissue Specificity Index (RETSI), both based on entropy to provide continuous, interpretable measures of specificity. By integrating gene expression and chromatin accessibility, SPICEY enables standardized analysis of cell-type-specific regulatory programs across diverse tissues and conditions.
This package provides functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH.
This package addresses the mean-variance relationship in spatially resolved transcriptomics data. Precision weights are generated for individual observations using Empirical Bayes techniques. These weights are used to rescale the data and covariates, which are then used as input in spatially variable gene detection tools.
Example spatial transcriptomics datasets with Simple Feature annotations as SpatialFeatureExperiment objects. Technologies include Visium, slide-seq, Nanostring CoxMX, Vizgen MERFISH, and 10X Xenium. Tissues include mouse skeletal muscle, human melanoma metastasis, human lung, breast cancer, and mouse liver.