Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Some basic functions to implement belief functions including: transformation between belief functions using the method introduced by Philippe Smets <arXiv:1304.1122>, evidence combination, evidence discounting, decision-making, and constructing masses. Currently, thirteen combination rules and six decision rules are supported. It can also be used to generate different types of random masses when working on belief combination and conflict management.
This package contains bibliographic information for the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office.
This package provides functions to assess the strength and statistical significance of the relationship between species occurrence/abundance and groups of sites [De Caceres & Legendre (2009) <doi:10.1890/08-1823.1>]. Also includes functions to measure species niche breadth using resource categories [De Caceres et al. (2011) <doi:10.1111/J.1600-0706.2011.19679.x>].
Convert files to and from IDX format to vectors, matrices and arrays. IDX is a very simple file format designed for storing vectors and multidimensional matrices in binary format. The format is described on the website from Yann LeCun <http://yann.lecun.com/exdb/mnist/>.
This package provides tools for multivariate nonparametrics, as location tests based on marginal ranks, spatial median and spatial signs computation, Hotelling's T-test, estimates of shape are implemented.
Run quality checks on data sets using the same checks that are conducted on the ICES Data Submission Utility (DATSU) <https://datsu.ices.dk>.
Power analysis for regression models which test the interaction of two or three independent variables on a single dependent variable. Includes options for correlated interacting variables and specifying variable reliability. Two-way interactions can include continuous, binary, or ordinal variables. Power analyses can be done either analytically or via simulation. Includes tools for simulating single data sets and visualizing power analysis results. The primary functions are power_interaction_r2() and power_interaction() for two-way interactions, and power_interaction_3way_r2() for three-way interactions. Please cite as: Baranger DAA, Finsaas MC, Goldstein BL, Vize CE, Lynam DR, Olino TM (2023). "Tutorial: Power analyses for interaction effects in cross-sectional regressions." <doi:10.1177/25152459231187531>.
Parameter estimation via likelihood interval (LI) compared to traditional method (CI). This is the expanded version for LBI'- and wnl'-package, formulated by Kyun-Seop Bae <k@acr.kr>.
This package provides a set of functions to estimate interactions flexibly in the face of possibly many controls. Implements the procedures described in Blackwell and Olson (2022) <doi:10.1017/pan.2021.19>.
This package provides a procedure for seeding R's built in random number generators using a variable-length sequence of values. Accumulates input entropy into a 256-bit hash digest or "ironseed" and is able to generate a variable-length sequence of output seeds from an ironseed.
As a sequel to iNEXT', the iNEXT.beta3D package provides functions to compute standardized taxonomic, phylogenetic, and functional diversity (3D) estimates with a common sample size (for alpha and gamma diversity) or sample coverage (for alpha, beta, gamma diversity as well as dissimilarity or turnover indices). Hill numbers and their generalizations are used to quantify 3D and to make multiplicative decomposition (gamma = alpha x beta). The package also features size- and coverage-based rarefaction and extrapolation sampling curves to facilitate rigorous comparison of beta diversity across datasets. See Chao et al. (2023) <doi:10.1002/ecm.1588> for more details.
Estimation of the most-left informative set of gross returns (i.e., the informative set). The procedure to compute the informative set adjusts the method proposed by Mariani et al. (2022a) <doi:10.1007/s11205-020-02440-6> and Mariani et al. (2022b) <doi:10.1007/s10287-022-00422-2> to gross returns of financial assets. This is accomplished through an adaptive algorithm that identifies sub-groups of gross returns in each iteration by approximating their distribution with a sequence of two-component log-normal mixtures. These sub-groups emerge when a significant change in the distribution occurs below the median of the financial returns, with their boundary termed as the รข change point" of the mixture. The process concludes when no further change points are detected. The outcome encompasses parameters of the leftmost mixture distributions and change points of the analyzed financial time series. The functionalities of the INFOSET package include: (i) modelling asset distribution detecting the parameters which describe left tail behaviour (infoset function), (ii) clustering, (iii) labeling of the financial series for predictive and classification purposes through a Left Risk measure based on the first change point (LR_cp function) (iv) portfolio construction (ptf_construction function). The package also provide a specific function to construct rolling windows of different length size and overlapping time.
This package provides classes and functions for working with IP (Internet Protocol) addresses and networks, inspired by the Python ipaddress module. Offers full support for both IPv4 and IPv6 (Internet Protocol versions 4 and 6) address spaces. It is specifically designed to work well with the tidyverse'.
Enable user to find the IP addresses which are used as VPN anonymizer, open proxies, web proxies and Tor exits. The package lookup the proxy IP address from IP2Proxy BIN Data file. You may visit <https://lite.ip2location.com> for free database download.
This package provides a user-friendly interface, using Shiny, to analyse glucose-stimulated insulin secretion (GSIS) assays in pancreatic beta cells or islets. The package allows the user to import several sets of experiments from different spreadsheets and to perform subsequent steps: summarise in a tidy format, visualise data quality and compare experimental conditions without omitting to account for technical confounders such as the date of the experiment or the technician. Together, insane is a comprehensive method that optimises pre-processing and analyses of GSIS experiments in a friendly-user interface. The Shiny App was initially designed for EndoC-betaH1 cell line following method described in Ndiaye et al., 2017 (<doi:10.1016/j.molmet.2017.03.011>).
Imputing blockwise missing data by imprecise imputation, featuring a domain-based, variable-wise, and case-wise strategy. Furthermore, the estimation of lower and upper bounds for unconditional and conditional probabilities based on the obtained imprecise data is implemented. Additionally, two utility functions are supplied: one to check whether variables in a data set contain set-valued observations; and another to merge two already imprecisely imputed data. The method is described in a technical report by Endres, Fink and Augustin (2018, <doi:10.5282/ubm/epub.42423>).
Simulate general insurance policies, losses and loss emergence. The functions contemplate deterministic and stochastic policy retention and growth scenarios. Retention and growth rates are percentages relative to the expiring portfolio. Claims are simulated for each policy. This is accomplished either be assuming a frequency distribution per development lag or by generating random wait times until claim emergence and settlement. Loss simulation uses standard loss distributions for claim amounts.
Builds statistical control charts with exact limits for univariate and multivariate cases.
Interpretation methods for analyzing the behavior and individual predictions of modern neural networks in a three-step procedure: Converting the model, running the interpretation method, and visualizing the results. Implemented methods are, e.g., Connection Weights described by Olden et al. (2004) <doi:10.1016/j.ecolmodel.2004.03.013>, layer-wise relevance propagation ('LRP') described by Bach et al. (2015) <doi:10.1371/journal.pone.0130140>, deep learning important features ('DeepLIFT') described by Shrikumar et al. (2017) <doi:10.48550/arXiv.1704.02685> and gradient-based methods like SmoothGrad described by Smilkov et al. (2017) <doi:10.48550/arXiv.1706.03825>, Gradient x Input or Vanilla Gradient'. Details can be found in the accompanying scientific paper: Koenen & Wright (2024, Journal of Statistical Software, <doi:10.18637/jss.v111.i08>).
Fit Spatial Econometrics models using Bayesian model averaging on models fitted with INLA. The INLA package can be obtained from <https://www.r-inla.org>.
Set of functions to impute missing rare earth data, calculate La and Pr concentrations and Ce anomalies in zircons based on the Chondrite-Onuma and Chondrite-Lattice of Carrasco-Godoy and Campbell (2023) <doi:10.1007/s00410-023-02025-9> and the Logarithmic regression from Zhong et al. (2019) <doi:10.1007/s00710-019-00682-y>.
This package provides a multi-layered untargeted pipeline for high-throughput LC/HRMS data processing to extract signals of organic small molecules. The package performs ion pairing, peak detection, peak table alignment, retention time correction, aligned peak table gap filling, peak annotation and visualization of extracted ion chromatograms (EICs) and total ion chromatograms (TICs). The IDSL.IPA package was introduced in <doi:10.1021/acs.jproteome.2c00120> .
Allows the construction selection indices based on estimated breeding values in animal and plant breeding and to calculate several analytic measures around to assess its impact on genetic and phenotypic progress. The methodology thereby allows to analyze genetic gain of traits in the breeding goal which are not part of the actual index and automatically computes several analytic measures. It further allows to retrospectively derive realized economic weights from observed genetic trends. The framework is described in Simianer, H., Heise, J., Rensing, S., Pook, T. Geibel, J. and Reimer, C. (2023) <doi:10.1186/s12711-023-00807-0>.
This package provides functions to parse strings with ISO8601 dates, times, and date-times into R-objects. Additionally, there are functions to determine the type of ISO8601 string and to standardise ISO8601 strings.