Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The two main functionalities of this package are creating mock objects (functions) and selectively intercepting calls to a given function that originate in some other function. It can be used with any testing framework available for R. Mock objects can be injected with either this package's own stub function or a similar with_mock facility present in the testthat package.
Tools to access data from the data web service of the OeNB, https://www.oenb.at/en/Statistics/User-Defined-Tables/webservice.html.
This package provides a fast, scalable, and versatile framework for simulating large systems with Gillespie's Stochastic Simulation Algorithm (SSA). This package is the spiritual successor to the GillespieSSA package. Benefits of this package include major speed improvements (>100x), easier to understand documentation, and many unit tests that try to ensure the package works as intended.
This package provides some helpful extensions and modifications to the ggplot2 package to combine multiple ggplot2 plots into one and label them with letters, as is often required for scientific publications.
This package implements the Differential Evolution algorithm. This algorithm is used for the global optimization of a real-valued function of a real-valued parameter vector. The implementation of DifferentialEvolution in DEoptim interfaces with C code for efficiency.
This package implements functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the spatstat family of packages. Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
Multivariate data sets often differ in several factors or derived statistical parameters, which have to be selected for a valid interpretation. Basing this selection on traditional statistical limits leads occasionally to the perception of losing information from a data set. This package provides tools to calculate these limits on the basis of the mathematical properties of the distribution of the analyzed items.
This package lets you fit beta regression and zero-or-one inflated beta regression and obtain Bayesian inference of the model via the Markov Chain Monte Carlo approach implemented in JAGS.
This package provides a parallel estimation of the mutual information based on entropy estimates from k-nearest neighbors distances and algorithms for the reconstruction of gene regulatory networks.
This package is for genomic regions processing using command line tools such as BEDTools, BEDOPS and Tabix. These tools offer scalable and efficient utilities to perform genome arithmetic e.g indexing, formatting and merging. The bedr package's API enhances access to these tools as well as offers additional utilities for genomic regions processing.
This package provides simulation methods for the evolution of antibody repertoires. The heavy and light chain variable region of both human and C57BL/6 mice can be simulated in a time-dependent fashion. Both single lineages using one set of V-, D-, and J-genes or full repertoires can be simulated. The algorithm begins with an initial V-D-J recombination event, starting the first phylogenetic tree. Upon completion, the main loop of the algorithm begins, with each iteration representing one simulated time step. Various mutation events are possible at each time step, contributing to a diverse final repertoire.
This package provides several cluster-robust variance estimators (i.e., sandwich estimators) for ordinary and weighted least squares linear regression models, including the bias-reduced linearization estimator introduced by Bell and McCaffrey (2002) http://www.statcan.gc.ca/pub/12-001-x/2002002/article/9058-eng.pdf and developed further by Pustejovsky and Tipton (2017) doi:10.1080/07350015.2016.1247004. The package includes functions for estimating the variance- covariance matrix and for testing single- and multiple-contrast hypotheses based on Wald test statistics. Tests of single regression coefficients use Satterthwaite or saddle-point corrections. Tests of multiple-contrast hypotheses use an approximation to Hotelling's T-squared distribution. Methods are provided for a variety of fitted models, including lm() and mlm objects, glm(), ivreg (from package AER), plm() (from package plm), gls() and lme() (from nlme), robu() (from robumeta), and rma.uni() and rma.mv() (from metafor).
This package implements affinity propagation clustering introduced by Frey and Dueck (2007). The package further provides leveraged affinity propagation and an algorithm for exemplar-based agglomerative clustering that can also be used to join clusters obtained from affinity propagation. Various plotting functions are available for analyzing clustering results.
This package lets you import foreign statistical formats into R via the ReadStat C library.
mlr3pipelines enriches mlr3 with a diverse set of pipelining operators (PipeOps) that can be composed into graphs. Operations exist for data preprocessing, model fitting, and ensemble learning. Graphs can themselves be treated as mlr3 Learners and can therefore be resampled, benchmarked, and tuned.
This package provides tools to find the k nearest neighbours for every point in a given dataset in O(N log N) time using Arya and Mount's ANN library. There is support for approximate as well as exact searches, fixed radius searches and bd as well as kd trees. The distance is computed using the L1 (Manhattan, taxicab) metric.
This package provides an extension of the functionality of the Matrix package for using sparse matrices. Some of the functions are very general, while other are highly specific for the special data format used for quantitative language comparison (QLC).
This package provides support software for Statistical Analysis and Data Display (Second Edition, Springer, ISBN 978-1-4939-2121-8, 2015) and (First Edition, Springer, ISBN 0-387-40270-5, 2004) by Richard M. Heiberger and Burt Holland. This contemporary presentation of statistical methods features extensive use of graphical displays for exploring data and for displaying the analysis. The second edition includes redesigned graphics and additional chapters. The authors emphasize how to construct and interpret graphs, discuss principles of graphical design, and show how accompanying traditional tabular results are used to confirm the visual impressions derived directly from the graphs. Many of the graphical formats are novel and appear here for the first time in print. All chapters have exercises. All functions introduced in the book are in the package. R code for all examples, both graphs and tables, in the book is included in the scripts directory of the package.
This package provides tools for capturing logic in a Shiny app and exposing it as code that can be run outside of Shiny (e.g., from an R console). It also provides tools for bundling both the code and results to the end user.
Ridgeline plots provide a convenient way of visualizing changes in distributions over time or space. This package enables the creation of such plots in ggplot2.
This package provides the exponential integrals E_1(x), E_2(x), E_n(x) and Ei(x), and the incomplete gamma function G(a, x) defined for negative values of its first argument. The package also gives easy access to the underlying C routines through an API; see the package vignette for details.
This package provides Gaussian mixture models, k-means, mini-batch-kmeans, k-medoids and affinity propagation clustering with the option to plot, validate, predict (new data) and estimate the optimal number of clusters. The package takes advantage of RcppArmadillo to speed up the computationally intensive parts of the functions. For more information, see
"Clustering in an Object-Oriented Environment" by Anja Struyf, Mia Hubert, Peter Rousseeuw (1997), Journal of Statistical Software, https://doi.org/10.18637/jss.v001.i04;
"Web-scale k-means clustering" by D. Sculley (2010), ACM Digital Library, https://doi.org/10.1145/1772690.1772862;
"Armadillo: a template-based C++ library for linear algebra" by Sanderson et al (2016), The Journal of Open Source Software, https://doi.org/10.21105/joss.00026;
"Clustering by Passing Messages Between Data Points" by Brendan J. Frey and Delbert Dueck, Science 16 Feb 2007: Vol. 315, Issue 5814, pp. 972-976, https://doi.org/10.1126/science.1136800.
This package provides pure R tools to read BMP format images. It is currently limited to 8 bit greyscale images and 24, 32 bit (A)RGB images.
Asio is a cross-platform C++ library for network and low-level I/O programming that provides developers with a consistent asynchronous model using a modern C++ approach. It is also included in Boost but requires linking when used with Boost. Standalone it can be used header-only (provided a recent compiler). Asio is written and maintained by Christopher M. Kohlhoff, and released under the Boost Software License', Version 1.0.