Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Functions implemented in this package allow coercing (i.e. convert) network data between classes provided by other R packages. Currently supported classes are those defined in packages network and igraph.
This is a developer-focused, low dependency package in tidymodels that provides functions to register how models are to be used. Functions to register models are complimented with accessor functions to retrieve registered model information to aid in model fitting and error handling.
This package contains functions to implement the methodology and considerations laid out by Marks et al. in the article "Measuring abnormality in high dimensional spaces: applications in biomechanical gait analysis". Using high-dimensional datasets to measure a subject's overall level of abnormality as compared to a reference population is often needed in outcomes research.
This package provides the functionality to set configuration options on a per-package basis. Options set by a given package only apply to that package, other packages are unaffected.
This package provides functions for analyzing multivariate data. Dependencies of the distribution of the specified variable (response variable) to other variables (explanatory variables) are derived and evaluated by the Akaike Information Criterion (AIC).
This package provides methods operating on rows and columns of matrices, e.g. rowMedians(), rowRanks(), and rowSds(). There are also some vector-based methods, e.g. binMeans(), madDiff() and weightedMedians(). All methods have been optimized for speed and memory usage.
This package provides tools for the analysis and visualization of bilateral asymmetry in parasitic infections.
R-wrs2 offers a range of strong stats methods from Wilcox WRS functions. It implements robust t-tests, both independent and dependent, robust ANOVA, including designs with between-within subjects, quantile ANOVA, robust correlation, robust mediation, and nonparametric ANCOVA models using robust location measures.
This package tracks reading and writing within R scripts that are organized into a directed acyclic graph. It contains an interactive Shiny application adaprApp(). It uses Git and file hashes to track version histories of inputs and outputs.
This package is a toolkit for working with Bezier curves and splines. The package provides functions for point generation, arc length estimation, degree elevation and curve fitting.
Build complex HTML or LaTeX tables using kable() from knitr and the piping syntax from magrittr. The function kable() is a light weight table generator coming from knitr. This package simplifies the way to manipulate the HTML or LaTeX codes generated by kable() and allows users to construct complex tables and customize styles using a readable syntax.
Cluster ensembles are collections of individual solutions to a given clustering problem which are useful or necessary to consider in a wide range of applications. This R package provides an extensible computational environment for creating and analyzing cluster ensembles, with basic data structures for representing partitions and hierarchies, and facilities for computing on them, including methods for measuring proximity and obtaining consensus and secondary clusterings.
This package provides tools to perform analyses and combine results from multiple-imputation datasets.
This package provides a set of predicates and assertions for checking the properties of variables, such as length, names and attributes. This is mainly for use by other package developers who want to include run-time testing features in their own packages.
This package provides a simple interface for creating active bindings where the bound function accepts additional arguments.
This package simulates continuous distributions of random vectors using Markov chain Monte Carlo (MCMC). Users specify the distribution by an R function that evaluates the log unnormalized density. Algorithms are random walk Metropolis algorithm (function metrop), simulated tempering (function temper), and morphometric random walk Metropolis (function morph.metrop), which achieves geometric ergodicity by change of variable.
This package provides functions to fit kernel density functions to animal activity time data; plot activity distributions; quantify overall levels of activity; statistically compare activity metrics through bootstrapping; and evaluate variation in linear variables with time (or other circular variables).
The Datasaurus Dozen is a set of datasets with the same summary statistics. They retain the same summary statistics despite having radically different distributions. The datasets represent a larger and quirkier object lesson that is typically taught via Anscombe's Quartet (available in the 'datasets' package). Anscombe's Quartet contains four very different distributions with the same summary statistics and as such highlights the value of visualisation in understanding data, over and above summary statistics. As well as being an engaging variant on the Quartet, the data is generated in a novel way. The simulated annealing process used to derive datasets from the original Datasaurus is detailed in "Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing" doi:10.1145/3025453.3025912.
This package provides tools to infer the code style (which style rules are followed and which ones are not) from one package and use it to check another. This makes it easier to find and correct the most important problems first.
This package provides a cross-platform interface to file system operations, built on top of the libuv C library.
This package performs augmented backward elimination and checks the stability of the obtained model. Augmented backward elimination combines significance or information based criteria with the change in estimate to either select the optimal model for prediction purposes or to serve as a tool to obtain a practically sound, highly interpretable model.
This package provides a collection of miscellaneous 3d plots, including isosurfaces.
This package contains methods described by Dennis Helsel in his book Nondetects and Data Analysis: Statistics for Censored Environmental Data.
Genomic analysis of model organisms often requires the use of databases based on human data or making comparisons to patient-derived resources. This requires converting genes between human and non-human analogues. The babelgene R package provides predicted gene orthologs/homologs for frequently studied model organisms in an R-friendly tidy/long format. The package integrates orthology assertion predictions sourced from multiple databases as compiled by the HGNC Comparison of Orthology Predictions (HCOP).