Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides classes and helper functions for loading, extracting, converting, manipulating, plotting and aggregating epidemiological parameters for infectious diseases. Epidemiological parameters extracted from the literature are loaded from the epiparameterDB R package.
Evolutionary game theory applies game theory to evolving populations in biology, see e.g. one of the books by Weibull (1994, ISBN:978-0262731218) or by Sandholm (2010, ISBN:978-0262195874) for more details. A comprehensive set of tools to illustrate the core concepts of evolutionary game theory, such as evolutionary stability or various evolutionary dynamics, for teaching and academic research is provided.
We implement (or re-implements in R) a variety of statistical tools. They are focused on non-parametric two-sample (or k-sample) distribution comparisons in the univariate or multivariate case. See the vignette for more info.
Implementation in a simple and efficient way of fully customisable population genetics simulations, considering multiple loci that have epistatic interactions. Specifically suited to the modelling of multilocus nucleocytoplasmic systems (with both diploid and haploid loci), it is nevertheless possible to simulate purely diploid (or purely haploid) genetic models. Examples of models that can be simulated with Ease are numerous, for example models of genetic incompatibilities as presented by Marie-Orleach et al. (2022) <doi:10.1101/2022.07.25.501356>. Many others are conceivable, although few are actually explored, Ease having been developed in particular to provide a solution so that these kinds of models can be simulated simply.
This package provides functions to delineate temporal dataset shifts in Electronic Health Records through the projection and visualization of dissimilarities among data temporal batches. This is done through the estimation of data statistical distributions over time and their projection in non-parametric statistical manifolds, uncovering the patterns of the data latent temporal variability. EHRtemporalVariability is particularly suitable for multi-modal data and categorical variables with a high number of values, common features of biomedical data where traditional statistical process control or time-series methods may not be appropriate. EHRtemporalVariability allows you to explore and identify dataset shifts through visual analytics formats such as Data Temporal heatmaps and Information Geometric Temporal (IGT) plots. An additional EHRtemporalVariability Shiny app can be used to load and explore the package results and even to allow the use of these functions to those users non-experienced in R coding. (Sáez et al. 2020) <doi:10.1093/gigascience/giaa079>.
This package provides more than 550 data sets of actual election results. Each of the data sets includes aggregate party and candidate outcomes at the voting unit (polling stations) level and two-way cross-tabulated results at the district level. These data sets can be used to assess ecological inference algorithms devised for estimating RxC (global) ecological contingency tables using exclusively aggregate results from voting units. Reference: Pavà a (2022) <doi:10.1177/08944393211040808>.
Evidence of Absence software (EoA) is a user-friendly application for estimating bird and bat fatalities at wind farms and designing search protocols. The software is particularly useful in addressing whether the number of fatalities has exceeded a given threshold and what search parameters are needed to give assurance that thresholds were not exceeded. The models are applicable even when zero carcasses have been found in searches, following Huso et al. (2015) <doi:10.1890/14-0764.1>, Dalthorp et al. (2017) <doi:10.3133/ds1055>, and Dalthorp and Huso (2015) <doi:10.3133/ofr20151227>.
This package provides a set of procedures for estimating risks related to extreme events via risk measures such as Expectile, Value-at-Risk, etc. is provided. Estimation methods for univariate independent observations and temporal dependent observations are available. The methodology is extended to the case of independent multidimensional observations. The statistical inference is performed through parametric and non-parametric estimators. Inferential procedures such as confidence intervals, confidence regions and hypothesis testing are obtained by exploiting the asymptotic theory. Adapts the methodologies derived in Padoan and Stupfler (2022) <doi:10.3150/21-BEJ1375>, Davison et al. (2023) <doi:10.1080/07350015.2022.2078332>, Daouia et al. (2018) <doi:10.1111/rssb.12254>, Drees (2000) <doi:10.1214/aoap/1019487617>, Drees (2003) <doi:10.3150/bj/1066223272>, de Haan and Ferreira (2006) <doi:10.1007/0-387-34471-3>, de Haan et al. (2016) <doi:10.1007/s00780-015-0287-6>, Padoan and Rizzelli (2024) <doi:10.3150/23-BEJ1668>, Daouia et al. (2024) <doi:10.3150/23-BEJ1632>.
Implementation of the Edge Selection Algorithm for undirected graph selection. The least angle regression-based algorithm selects edges of an undirected graph based on the projection of the current residuals on the two dimensional edge-planes. The algorithm selects symmetric adjacency matrix, which many other regression-based undirected graph selection procedures cannot do.
This package provides a model-independent factor importance ranking and selection procedure based on total Sobol indices. Please see Huang and Joseph (2025) <doi:10.1080/00401706.2025.2483531>. This research is supported by U.S. National Science Foundation grants DMS-2310637 and DMREF-1921873.
Computes the penalized maximum likelihood estimates of factor loadings and unique variances for various tuning parameters. The pathwise coordinate descent along with EM algorithm is used. This package also includes a new graphical tool which outputs path diagram, goodness-of-fit indices and model selection criteria for each regularization parameter. The user can change the regularization parameter by manipulating scrollbars, which is helpful to find a suitable value of regularization parameter.
Inference methods for factor copula models for continuous data in Krupskii and Joe (2013) <doi:10.1016/j.jmva.2013.05.001>, Krupskii and Joe (2015) <doi:10.1016/j.jmva.2014.11.002>, Fan and Joe (2024) <doi:10.1016/j.jmva.2023.105263>, one factor truncated vine models in Joe (2018) <doi:10.1002/cjs.11481>, and Gaussian oblique factor models. Functions for computing tail-weighted dependence measures in Lee, Joe and Krupskii (2018) <doi:10.1080/10485252.2017.1407414> and estimating tail dependence parameter.
Implementation of the Stochastic Expectation Maximisation (StEM) approach to Record Linkage described in the paper by K. Robach, S. L. van der Pas, M. A. van de Wiel and M. H. Hof (2024, <doi:10.1093/jrsssc/qlaf016>); see citation("FlexRL") for details. This is a record linkage method, for finding the common set of records among 2 data sources based on Partially Identifying Variables (PIVs) available in both sources. It includes modelling of dynamic Partially Identifying Variables (e.g. postal code) that may evolve over time and registration errors (missing values and mistakes in the registration). Low memory footprint.
Perform factorial analysis with a menu and draw graphs interactively thanks to FactoMineR and a Shiny application.
This package creates participant flow diagrams directly from a dataframe. Representing the flow of participants through each stage of a study, especially in clinical trials, is essential to assess the generalisability and validity of the results. This package provides a set of functions that can be combined with a pipe operator to create all kinds of flowcharts from a data frame in an easy way.
This package contains regional Floristic Quality Assessment databases that have been approved or approved with reservations by the U.S. Army Corps of Engineers (USACE). Paired with the fqacalc R package, these data sets allow for Floristic Quality Assessment metrics to be calculated. For information on FQA see Spyreas (2019) <doi:10.1002/ecs2.2825>. Both packages were developed for the USACE by the U.S. Army Engineer Research and Development Center's Environmental Laboratory.
The funLBM algorithm allows to simultaneously cluster the rows and the columns of a data matrix where each entry of the matrix is a function or a time series.
Test function arguments with a wide array of inputs, and produce reports summarizing messages, warnings, errors, and returned values.
This package provides a collection of functions to manage, to investigate and to analyze data sets of financial assets from different points of view.
An interface to the Fish Tree of Life API to download taxonomies, phylogenies, fossil calibrations, and diversification rate information for ray-finned fishes.
Calculates marginal effects based on logistic model objects such as glm or speedglm at the average (default) or at given values using finite differences. It also returns confidence intervals for said marginal effects and the p-values, which can easily be used as input in stargazer. The function only returns the essentials and is therefore much faster but not as detailed as other functions available to calculate marginal effects. As a result, it is highly suitable for large datasets for which other packages may require too much time or calculating power.
An implementation of the methodologies described in Xi Liu, Afshin A. Divani, and Alexander Petersen (2022) <doi:10.1016/j.csda.2022.107421>, including truncated functional linear and truncated functional logistic regression models.
Code for fitting and assessing models for the growth of trees. In particular for the Bayesian neighborhood competition linear regression model of Allen (2020): methods for model fitting and generating fitted/predicted values, evaluating the effect of competitor species identity using permutation tests, and evaluating model performance using spatial cross-validation.
This R package can be used to generate artificial data conditionally on pre-specified (simulated or user-defined) relationships between the variables and/or observations. Each observation is drawn from a multivariate Normal distribution where the mean vector and covariance matrix reflect the desired relationships. Outputs can be used to evaluate the performances of variable selection, graphical modelling, or clustering approaches by comparing the true and estimated structures (B Bodinier et al (2021) <arXiv:2106.02521>).