Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
High level management of widgets, windows and other graphical resources.
Message translation is often managed with po files and the gettext programme, but sometimes another solution is needed. In contrast to po files, a more flexible approach is used as in the Fluent <https://projectfluent.org/> project with R Markdown snippets. The key-value approach allows easier handling of the translated messages.
From output files obtained from the software ModestR', the relative contribution of factors to explain species distribution is depicted using several plots. A global geographic raster file for each environmental variable may be also obtained with the mean relative contribution, considering all species present in each raster cell, of the factor to explain species distribution. Finally, for each variable it is also possible to compare the frequencies of any variable obtained in the cells where the species is present with the frequencies of the same variable in the cells of the extent.
Obtains lists of files of remote sensing collections for Southern Ocean surface properties. Commonly used data sources of sea surface temperature, sea ice concentration, and altimetry products such as sea surface height and sea surface currents are cached in object storage on the Pawsey Supercomputing Research Centre facility. Patterns of working to retrieve data from these object storage catalogues are described. The catalogues include complete collections of datasets Reynolds et al. (2008) "NOAA Optimum Interpolation Sea Surface Temperature (OISST) Analysis, Version 2.1" <doi:10.7289/V5SQ8XB5>, Spreen et al. (2008) "Artist Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) sea ice concentration" <doi:10.1029/2005JC003384>. In future releases helpers will be added to identify particular data collections and target specific dates for earth observation data for reading, as well as helpers to retrieve data set citation and provenance details. This work was supported by resources provided by the Pawsey Supercomputing Research Centre with funding from the Australian Government and the Government of Western Australia. This software was developed by the Integrated Digital East Antarctica program of the Australian Antarctic Division.
Estimates a covariance matrix using Stein's isotonized covariance estimator, or a related estimator suggested by Haff.
This package contains an implementation of invariant causal prediction for sequential data. The main function in the package is seqICP', which performs linear sequential invariant causal prediction and has guaranteed type I error control. For non-linear dependencies the package also contains a non-linear method seqICPnl', which allows to input any regression procedure and performs tests based on a permutation approach that is only approximately correct. In order to test whether an individual set S is invariant the package contains the subroutines seqICP.s and seqICPnl.s corresponding to the respective main methods.
This package provides infrastructure functionalities such as missing value treatment, information value calculation, GINI calculation etc. which are used for developing a traditional credit scorecard as well as a machine learning based model. The functionalities defined are standard steps for any credit underwriting scorecard development, extensively used in financial domain.
Univariate time series forecasting with STL decomposition based auto regressive integrated moving average (ARIMA) hybrid model. For method details see Xiong T, Li C, Bao Y (2018). <doi:10.1016/j.neucom.2017.11.053>.
This package provides a variety of functions to estimate time-dependent true/false positive rates and AUC curves from a set of censored survival data.
Estimate the internal consistency of your tasks with a permutation based split-half reliability approach. Unofficial release name: "I eat stickers all the time, dude!".
Programmatic access to Flipside Crypto data via the Compass RPC API: <https://api-docs.flipsidecrypto.xyz/>. As simple as auto_paginate_query() but with core functions as needed for troubleshooting. Note, 0.1.1 support deprecated 2023-05-31.
Generate the optimal Latin Hypercube Designs (LHDs) for computer experiments with quantitative factors and the optimal Sliced Latin Hypercube Designs (SLHDs) for computer experiments with both quantitative and qualitative factors. Details of the algorithm can be found in Ba, S., Brenneman, W. A. and Myers, W. R. (2015), "Optimal Sliced Latin Hypercube Designs," Technometrics. Important function in this package is "maximinSLHD".
Estimates unit-level and population-level parameters from a hierarchical model in marketing applications. The package includes: Hierarchical Linear Models with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a mixture of normals prior and covariates, Hierarchical Multinomial Logits with a Dirichlet Process prior and covariates. For more details, see Bumbaca, F. (Rico), Misra, S., & Rossi, P. E. (2020) <doi:10.1177/0022243720952410> "Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models". Journal of Marketing Research, 57(6), 999-1018.
Understand human performance from the perspective of sampling, both looking at how people generate samples and how people use the samples they have generated. A longer overview and other resources can be found at <https://sampling.warwick.ac.uk>.
The SoundexBR package provides an algorithm for decoding names into phonetic codes, as pronounced in Portuguese. The goal is for homophones to be encoded to the same representation so that they can be matched despite minor differences in spelling. The algorithm mainly encodes consonants; a vowel will not be encoded unless it is the first letter. The soundex code resultant consists of a four digits long string composed by one letter followed by three numerical digits: the letter is the first letter of the name, and the digits encode the remaining consonants.
This package provides tools and methods to simulate populations for surveys based on auxiliary data. The tools include model-based methods, calibration and combinatorial optimization algorithms, see Templ, Kowarik and Meindl (2017) <doi:10.18637/jss.v079.i10>) and Templ (2017) <doi:10.1007/978-3-319-50272-4>. The package was developed with support of the International Household Survey Network, DFID Trust Fund TF011722 and funds from the World bank.
Create correlation networks using St. Nicolas House Analysis ('SNHA'). The package can be used for visualizing multivariate data similar to Principal Component Analysis or Multidimensional Scaling using a ranking approach. In contrast to MDS and PCA', SNHA uses a network approach to explore interacting variables. For details see Hermanussen et. al. 2021', <doi:10.3390/ijerph18041741>.
Conducts hierarchical partitioning to calculate individual contributions of spatial and predictors (groups) towards total R2 for spatial simultaneous autoregressive model.
Perform meta-analysis of single-case experiments, including calculating various effect size measures (SMD, PND, PEM and NAP) and probability combining (additive and multiplicative method), as discussed in Bulte and Onghena (2013) <doi:10.22237/jmasm/1383280020>.
This package implements a spatial extension of the random forest algorithm (Georganos et al. (2019) <doi:10.1080/10106049.2019.1595177>). Allows for a geographically weighted random forest regression including a function to find the optical bandwidth. (Georganos and Kalogirou (2022) <https://www.mdpi.com/2220-9964/11/9/471>).
You can easily add advanced cohort-building component to your analytical dashboard or simple Shiny app. Then you can instantly start building cohorts using multiple filters of different types, filtering datasets, and filtering steps. Filters can be complex and data-specific, and together with multiple filtering steps you can use complex filtering rules. The cohort-building sidebar panel allows you to easily work with filters, add and remove filtering steps. It helps you with handling missing values during filtering, and provides instant filtering feedback with filter feedback plots. The GUI panel is not only compatible with native shiny bookmarking, but also provides reproducible R code.
This package provides a meta-package that aims to make R easier for everyone, especially programmers who have a background in SAS® software. This set of packages brings many useful concepts to R', including data libraries, data dictionaries, formats and format catalogs, a data step, and a traceable log. The system also includes a package that replicates several commonly-used SAS® procedures, like PROC FREQ', PROC MEANS', and PROC REG'.
Implement a promising, and yet little explored protocol for bioacoustical analysis, the eigensound method by MacLeod, Krieger and Jones (2013) <doi:10.4404/hystrix-24.1-6299>. Eigensound is a multidisciplinary method focused on the direct comparison between stereotyped sounds from different species. SoundShape', in turn, provide the tools required for anyone to go from sound waves to Principal Components Analysis, using tools extracted from traditional bioacoustics (i.e. tuneR and seewave packages), geometric morphometrics (i.e. geomorph package) and multivariate analysis (e.g. stats package). For more information, please see Rocha and Romano (2021) and check SoundShape repository on GitHub for news and updates <https://github.com/p-rocha/SoundShape>.
This data-driven phylogenetic comparative method fits stabilizing selection models to continuous trait data, building on the ouch methodology of Butler and King (2004) <doi:10.1086/426002>. The main functions fit a series of Hansen models using stepwise AIC, then identify cases of convergent evolution where multiple lineages have shifted to the same adaptive peak. For more information see Ingram and Mahler (2013) <doi:10.1111/2041-210X.12034>.