Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
R-coop offers implementations of covariance, correlation and cosine similarity. The implementations are fast and memory-efficient and their use is resolved automatically based on the input data, handled by R's S3 methods. Full descriptions of the algorithms and benchmarks are available in the package vignettes.
The devtools package is a collection of package development tools to simplify the devolpment of R packages.
Rcpp access to the CCTZ timezone library is provided. CCTZ is a C++ library for translating between absolute and civil times using the rules of a time zone. The CCTZ source code is included in this package.
This package lets you manage Google Drive files from R.
The TOML configuration format specifies an excellent format suitable for both human editing as well as the common uses of a machine-readable format. This package provides Rcpp bindings to a TOML parser.
This r-physicalactivity package provides a function wearingMarking for classification of monitored wear and nonwear time intervals in accelerometer data collected to assess physical activity. The package also contains functions for making plots of accelerometer data and obtaining the summary of various information including daily monitor wear time and the mean monitor wear time during valid days. The revised package version 0.2-1 improved the functions regarding speed, robustness and add better support for time zones and daylight saving. In addition, several functions were added:
the
markDeliverycan classify days for ActiGraph delivery by mail;the
markPAIcan categorize physical activity intensity level based on user-defined cut-points of accelerometer counts.
It also supports importing ActiGraph (AGD) files with readActigraph and queryActigraph functions.
Extracts sentiment and sentiment-derived plot arcs from text using a variety of sentiment dictionaries conveniently packaged for consumption by R users. Implemented dictionaries include syuzhet (default) developed in the Nebraska Literary Lab, afinn developed by Finn Arup Nielsen, bing developed by Minqing Hu and Bing Liu, and nrc developed by Mohammad, Saif M. and Turney, Peter D. Applicable references are available in README.md and in the documentation for the get_sentiment function. The package also provides a hack for implementing Stanford's coreNLP sentiment parser. The package provides several methods for plot arc normalization.
This package is a collection of data analysis tools. It includes tools for regression outlier detection in a fitted linear model, stationary bootstrap using a truncated geometric distribution, a comprehensive test for weak stationarity, column means by group, weighted biplots, and a heuristic to obtain a better initial configuration in non-metric MDS.
Streaming JSON (ndjson) has one JSON record per-line and many modern ndjson files contain large numbers of records. These constructs may not be columnar in nature, but it is often useful to read in these files and "flatten" the structure out to enable working with the data in an R data.frame-like context. Functions are provided that make it possible to read in plain ndjson files or compressed (gz) ndjson files and either validate the format of the records or create "flat" data.table structures from them.
This package contains genomic data for the plant pathogen Phytophthora infestans. It includes a variant file, a sequence file and an annotation file. This package is intended to be used as example data for packages that work with genomic data.
Inspired by the the futile.logger R package and logging Python module, this utility provides a flexible and extensible way of formatting and delivering log messages with low overhead.
This is a package for estimation of a sparse inverse covariance matrix using a lasso (L1) penalty. Facilities are provided for estimates along a path of values for the regularization parameter.
This package provides a computationally stable approach of fitting a Gaussian Process (GP) model to a deterministic simulator.
This package provides a system for embedded scientific computing and reproducible research with R. The OpenCPU server exposes a simple but powerful HTTP API for RPC and data interchange with R. This provides a reliable and scalable foundation for statistical services or building R web applications. The OpenCPU server runs either as a single-user development server within the interactive R session, or as a multi-user stack based on Apache2.
This is an extension of the testthat package that lets you add parameters to your unit tests. Parameterized unit tests are often easier to read and more reliable, since they follow the DNRY (do not repeat yourself) rule.
This package provides tools for exploratory data analysis and data visualization of biological sequence (DNA and protein) data. It also includes utilities for sequence data management under the ACNUC system.
The ACE file format is used in genomics to store contigs from sequencing machines. This tools converts it into FASTQ format. Both formats contain the sequence characters and their corresponding quality information. Unlike the FASTQ file, the ACE file stores the quality values numerically. The conversion algorithm uses the standard Sanger formula. The package facilitates insertion into pipelines, and content inspection.
This package provides the URL checking tools available in R 4.1+ as a package for earlier versions of R. It also uses concurrent requests so can be much faster than the serial versions.
This package provides utilities for processing the parameters of various statistical models. Beyond computing p values, CIs, and other indices for a wide variety of models, this package implements features like standardization or bootstrapping of parameters and models, feature reduction (feature extraction and variable selection) as well as conversion between indices of effect size.
int64 values can be created and accessed via the bit64 package and its integer64 class which package the int64 representation cleverly into a double. The nanotime package builds on this to support nanosecond-resolution timestamps. This package helps conversions between R and C++ via several helper functions provided via a single header file. A complete example client package is included as an illustration.
This package creates D3 JavaScript network, tree, dendrogram, and Sankey graphs from R.
This package contains a function to do exact Hardy-Weinburg testing (using Fisher's test) for SNP genotypes as typically obtained in a Genome Wide Association Study (GWAS).
This package provides advanced tryCatch and try functions for better error handling (logging, stack trace with source code references and support for post-mortem analysis via dump files).
This package implements many algorithms for statistical learning on sparse matrices: matrix factorizations, matrix completion, elastic net regressions, factorization machines. The rsparse package also enhances the Matrix package by providing methods for multithreaded <sparse, dense> matrix products and native slicing of the sparse matrices in Compressed Sparse Row (CSR) format.