Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Binding models which are useful when analysing protein-ligand interactions by techniques such as Biolayer Interferometry (BLI) or Surface Plasmon Resonance (SPR). Naman B. Shah, Thomas M. Duncan (2014) <doi:10.3791/51383>. Hoang H. Nguyen et al. (2015) <doi:10.3390/s150510481>. After initial binding parameters are known, binding curves can be simulated and parameters can be varied. The models within this package may also be used to fit a curve to measured binding data using non-linear regression.
The Prognostic Regression Offsets with Propagation of ERrors (for Treatment Effect Estimation) package facilitates direct adjustment for experiments and observational studies that is compatible with a range of study designs and covariance adjustment strategies. It uses explicit specification of clusters, blocks and treatment allocations to furnish probability of assignment-based weights targeting any of several average treatment effect parameters, and for standard error calculations reflecting these design parameters. For covariance adjustment of its Hajek and (one-way) fixed effects estimates, it enables offsetting the outcome against predictions from a dedicated covariance model, with standard error calculations propagating error as appropriate from the covariance model.
This package provides an interface to access public economic and financial data for economic research and quantitative analysis. The data sources including NBS, FRED, Sina, Eastmoney and etc. It also provides quantitative functions for trading strategies based on the data.table', TTR', PerformanceAnalytics and etc packages.
Do Markov chain Monte Carlo (MCMC) simulation of Potts models (Potts, 1952, <doi:10.1017/S0305004100027419>), which are the multi-color generalization of Ising models (so, as as special case, also simulates Ising models). Use the Swendsen-Wang algorithm (Swendsen and Wang, 1987, <doi:10.1103/PhysRevLett.58.86>) so MCMC is fast. Do maximum composite likelihood estimation of parameters (Besag, 1975, <doi:10.2307/2987782>, Lindsay, 1988, <doi:10.1090/conm/080>).
This package provides functions to easily convert data to binary formats other programs/machines can understand.
Algorithms to speed up the Bayesian Lasso Cox model (Lee et al., Int J Biostat, 2011 <doi:10.2202/1557-4679.1301>) and the Bayesian Lasso Cox with mandatory variables (Zucknick et al. Biometrical J, 2015 <doi:10.1002/bimj.201400160>).
Statistical methods for estimating preferential attachment and node fitness generative mechanisms in temporal complex networks are provided. Thong Pham et al. (2015) <doi:10.1371/journal.pone.0137796>. Thong Pham et al. (2016) <doi:10.1038/srep32558>. Thong Pham et al. (2020) <doi:10.18637/jss.v092.i03>. Thong Pham et al. (2021) <doi:10.1093/comnet/cnab024>.
There are two main functions: (1) To estimate the power of testing for linkage using an affected sib pair design, as a function of the recurrence risk ratios. We will use analytical power formulae as implemented in R. These are based on a Mathematica notebook created by Martin Farrall. (2) To examine how the power of the transmission disequilibrium test (TDT) depends on the disease allele frequency, the marker allele frequency, the strength of the linkage disequilibrium, and the magnitude of the genetic effect. We will use an R program that implements the power formulae of Abel and Muller-Myhsok (1998). These formulae allow one to quickly compute power of the TDT approach under a variety of different conditions. This R program was modeled on Martin Farrall's Mathematica notebook.
Utilize the Bayesian prior and posterior predictive checking approach to provide a statistical assessment of replication success and failure. The package is based on the methods proposed in Zhao,Y., Wen X.(2021) <arXiv:2105.03993>.
Latent group structures are a common challenge in panel data analysis. Disregarding group-level heterogeneity can introduce bias. Conversely, estimating individual coefficients for each cross-sectional unit is inefficient and may lead to high uncertainty. This package addresses the issue of unobservable group structures by implementing the pairwise adaptive group fused Lasso (PAGFL) by Mehrabani (2023) <doi:10.1016/j.jeconom.2022.12.002>. PAGFL identifies latent group structures and group-specific coefficients in a single step. On top of that, we extend the PAGFL to time-varying coefficient functions (FUSE-TIME), following Haimerl et al. (2025) <doi:10.48550/arXiv.2503.23165>.
In a typical protein labelling procedure, proteins are chemically tagged with a functional group, usually at specific sites, then digested into peptides, which are then analyzed using matrix-assisted laser desorption ionization - time of flight mass spectrometry (MALDI-TOF MS) to generate peptide fingerprint. Relative to the control, peptides that are heavier by the mass of the labelling group are informative for sequence determination. Searching for peptides with such mass shifts, however, can be difficult. This package, designed to tackle this inconvenience, takes as input the mass list of two or multiple MALDI-TOF MS mass lists, and makes pairwise comparisons between the labeled groups vs. control, and restores centroid mass spectra with highlighted peaks of interest for easier visual examination. Particularly, peaks differentiated by the mass of the labelling group are defined as a â pairâ , those with equal masses as a â matchâ , and all the other peaks as a â mismatchâ .For more bioanalytical background information, refer to following publications: Jingjing Deng (2015) <doi:10.1007/978-1-4939-2550-6_19>; Elizabeth Chang (2016) <doi:10.7171/jbt.16-2702-002>.
Principal component of explained variance (PCEV) is a statistical tool for the analysis of a multivariate response vector. It is a dimension- reduction technique, similar to Principal component analysis (PCA), that seeks to maximize the proportion of variance (in the response vector) being explained by a set of covariates.
This package provides a collection of miscellaneous functions for passive acoustics. Much of the content here is adapted to R from code written by other people. If you have any ideas of functions to add, please contact Taiki Sakai.
In the big data setting, working data sets are often distributed on multiple machines. However, classical statistical methods are often developed to solve the problems of single estimation or inference. We employ a novel parallel quasi-likelihood method in generalized linear models, to make the variances between different sub-estimators relatively similar. Estimates are obtained from projection subsets of data and later combined by suitably-chosen unknown weights. The philosophy of the package is described in Guo G. (2020) <doi:10.1007/s00180-020-00974-4>.
This package provides a toolbox to facilitate the calculation of political system indicators for researchers. This package offers a variety of basic indicators related to electoral systems, party systems, elections, and parliamentary studies, as well as others. Main references are: Loosemore and Hanby (1971) <doi:10.1017/S000712340000925X>; Gallagher (1991) <doi:10.1016/0261-3794(91)90004-C>; Laakso and Taagepera (1979) <doi:10.1177/001041407901200101>; Rae (1968) <doi:10.1177/001041406800100305>; HirschmaÅ (1945) <ISBN:0-520-04082-1>; Kesselman (1966) <doi:10.2307/1953769>; Jones and Mainwaring (2003) <doi:10.1177/13540688030092002>; Rice (1925) <doi:10.2307/2142407>; Pedersen (1979) <doi:10.1111/j.1475-6765.1979.tb01267.x>; SANTOS (2002) <ISBN:85-225-0395-8>.
This package contains a dataset of words used in 15.000 randomly extracted pages from the Portuguese Wikipedia (<https://pt.wikipedia.org/>).
This package provides functions which can be used to support the Multicriteria Decision Analysis (MCDA) process involving multiple criteria, by PROMETHEE (Preference Ranking Organization METHod for Enrichment of Evaluations).
This package provides analytic and simulation tools to estimate the minimum sample size required for achieving a target prediction mean-squared error (PMSE) or a specified proportional PMSE reduction (pPMSEr) in linear regression models. Functions implement the criteria of Ma (2023) <https://digital.wpi.edu/downloads/0g354j58c>, support covariance-matrix handling, and include helpers for root-finding and diagnostic plotting.
Combine probabilistic forecasts using CRPS learning algorithms proposed in Berrisch, Ziel (2021) <doi:10.48550/arXiv.2102.00968> <doi:10.1016/j.jeconom.2021.11.008>. The package implements multiple online learning algorithms like Bernstein online aggregation; see Wintenberger (2014) <doi:10.48550/arXiv.1404.1356>. Quantile regression is also implemented for comparison purposes. Model parameters can be tuned automatically with respect to the loss of the forecast combination. Methods like predict(), update(), plot() and print() are available for convenience. This package utilizes the optim C++ library for numeric optimization <https://github.com/kthohr/optim>.
Achieve internal conversions of mass units, molar units, and volume units commonly used in pharmacokinetics, as well as conversions between mass units and molar units.
Examples for integrating package perry for prediction error estimation into regression models.
An add-on to the party package, with a faster implementation of the partial-conditional permutation importance for random forests. The standard permutation importance is implemented exactly the same as in the party package. The conditional permutation importance can be computed faster, with an option to be backward compatible to the party implementation. The package is compatible with random forests fit using the party and the randomForest package. The methods are described in Strobl et al. (2007) <doi:10.1186/1471-2105-8-25> and Debeer and Strobl (2020) <doi:10.1186/s12859-020-03622-2>.
Multi-group (dynamical) structural equation models in combination with confirmatory network models from cross-sectional, time-series and panel data <doi:10.31234/osf.io/8ha93>. Allows for confirmatory testing and fit as well as exploratory model search.
This package provides a wrapper around the generic coordinate transformation software PROJ that transforms coordinates from one coordinate reference system ('CRS') to another. This includes cartographic projections as well as geodetic transformations. The intention is for this package to be used by user-packages such as reproj', and that the older PROJ.4 and version 5 pathways be provided by the proj4 package.