Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The Model-based Analysis of ChIP-Seq (MACS) is a widely used toolkit for identifying transcript factor binding sites. This package is an R wrapper of the lastest MACS3.
Useful functions to work with sequence motifs in the analysis of genomics data. These include methods to annotate genomic regions or sequences with predicted motif hits and to identify motifs that drive observed changes in accessibility or expression. Functions to produce informative visualizations of the obtained results are also provided.
Provide functions for performing abundance and compositional based binning on metagenomic samples, directly from FASTA or FASTQ files. Functions are implemented in Java and called via rJava. Parallel implementation that operates directly on input FASTA/FASTQ files for fast execution.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MG-U74Av2\_probe\_tab.
This package was created by frmaTools version 1.19.3 and hgu133ahsentrezgcdf version 19.0.0.
This package provides functions for preprocessing, automated gating and meta-analysis of cytometry data. It also provides functions that facilitate the collection of cytometry data from the ImmPort database.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Mouse430\_2\_probe\_tab.
MPRAnalyze provides statistical framework for the analysis of data generated by Massively Parallel Reporter Assays (MPRAs), used to directly measure enhancer activity. MPRAnalyze can be used for quantification of enhancer activity, classification of active enhancers and comparative analyses of enhancer activity between conditions. MPRAnalyze construct a nested pair of generalized linear models (GLMs) to relate the DNA and RNA observations, easily adjustable to various experimental designs and conditions, and provides a set of rigorous statistical testig schemes.
This package provides a package containing an environment representing the Mu6500subD.CDF file.
gene target tabale of miRNA for human/mouse used for MiRaGE package.
Mutational signatures are carcinogenic exposures or aberrant cellular processes that can cause alterations to the genome. We created musicatk (MUtational SIgnature Comprehensive Analysis ToolKit) to address shortcomings in versatility and ease of use in other pre-existing computational tools. Although many different types of mutational data have been generated, current software packages do not have a flexible framework to allow users to mix and match different types of mutations in the mutational signature inference process. Musicatk enables users to count and combine multiple mutation types, including SBS, DBS, and indels. Musicatk calculates replication strand, transcription strand and combinations of these features along with discovery from unique and proprietary genomic feature associated with any mutation type. Musicatk also implements several methods for discovery of new signatures as well as methods to infer exposure given an existing set of signatures. Musicatk provides functions for visualization and downstream exploratory analysis including the ability to compare signatures between cohorts and find matching signatures in COSMIC V2 or COSMIC V3.
Affymetrix Affymetrix MG_U74B Array annotation data (chip mgu74b) assembled using data from public repositories.
The MOFA2 package contains a collection of tools for training and analysing multi-omic factor analysis (MOFA). MOFA is a probabilistic factor model that aims to identify principal axes of variation from data sets that can comprise multiple omic layers and/or groups of samples. Additional time or space information on the samples can be incorporated using the MEFISTO framework, which is part of MOFA2. Downstream analysis functions to inspect molecular features underlying each factor, vizualisation, imputation etc are available.
Data used by the barcode package for microarrays of type mouse4302.
Agilent "Mouse Genome, Whole" annotation data (chip mgug4122a) assembled using data from public repositories.
This package provides a package containing an environment representing the MOE430B.CDF file.
An R package for deeping mining gene co-expression networks in multi-trait expression data. Provides functions for analyzing, comparing, and visualizing WGCNA networks across conditions. multiWGCNA was designed to handle the common case where there are multiple biologically meaningful sample traits, such as disease vs wildtype across development or anatomical region.
This package contains example data for the MUGA array that is used by the R package DOQTL.
This package provides a package containing an environment representing the Mu19KsubB.CDF file.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was MoGene-1\_0-st-v1\_probe\_tab.
Memory efficient analysis of base resolution DNA methylation data in both the CpG and non-CpG sequence context. Integration of DNA methylation data derived from any methodology providing base- or low-resolution data.
MEDME allows the prediction of absolute and relative methylation levels based on measures obtained by MeDIP-microarray experiments.
MSstatsQCgui is a Shiny app which provides longitudinal system suitability monitoring and quality control tools for proteomic experiments.
This package provides a collection of pancreatic Cancer transcriptomic datasets that are part of the MetaGxData package compendium. This package contains multiple pancreas cancer datasets that have been downloaded from various resources and turned into SummarizedExperiment objects. The details of how the authors normalized the data can be found in the experiment data section of the objects. Additionally, the location the data was obtained from can be found in the url variables of the experiment data portion of each SE.