Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a pedagogical package, designed to help students understanding convergence of random variables. It provides a way to investigate interactively various modes of convergence (in probability, almost surely, in law and in mean) of a sequence of i.i.d. random variables. Visualisation of simulated sample paths is possible through interactive plots. The approach is illustrated by examples and exercises through the function investigate', as described in Lafaye de Micheaux and Liquet (2009) <doi:10.1198/tas.2009.0032>. The user can study his/her own sequences of random variables.
This package provides tools for fitting the copCAR (Hughes, 2015) <DOI:10.1080/10618600.2014.948178> regression model for discrete areal data. Three types of estimation are supported (continuous extension, composite marginal likelihood, and distributional transform), for three types of outcomes (Bernoulli, negative binomial, and Poisson).
This package provides simplified access to the data from the Catalog of Theses and Dissertations of the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES, <https://catalogodeteses.capes.gov.br>) for the years 1987 through 2022. The dataset includes variables such as Higher Education Institution (institution), Area of Concentration (area), Graduate Program Name (program_name), Type of Work (type), Language of Work (language), Author Identification (author), Abstract (abstract), Advisor Identification (advisor), Development Region (region), State (state).
Fast and memory-efficient (or cheap') tools to facilitate efficient programming, saving time and memory. It aims to provide cheaper alternatives to common base R functions, as well as some additional functions.
This package performs least squares constrained optimization on a linear objective function. It contains a number of algorithms to choose from and offers a formula syntax similar to lm().
Patients Mental Health (MH) status, Substance Use (SU) status, and concurrent MH/SU status in the American/Canadian Healthcare Administrative Databases can be identified. The detection is based on given parameters of interest by clinicians including the list of plausible ICD MH/SU codes (3/4/5 characters), the required number of visits of hospital for MH/SU , the required number of visits of service physicians for MH/SU, and the maximum time span within MH visits, within SU visits, and, between MH and SU visits. Methods are described in: Khan S <https://pubmed.ncbi.nlm.nih.gov/29044442/>, Keen C, et al. (2021) <doi:10.1111/add.15580>, Lavergne MR, et al. (2022) <doi:10.1186/s12913-022-07759-z>, Casillas, S M, et al. (2022) <doi:10.1016/j.abrep.2022.100464>, CIHI (2022) <https://www.cihi.ca/en>, CDC (2024) <https://www.cdc.gov>, WHO (2019) <https://icd.who.int/en>.
Facilitates dynamic exploration of text collections through an intuitive graphical user interface and the power of regular expressions. The package contains 1) a helper function to convert a data frame to a corporaexplorerobject and 2) a Shiny app for fast and flexible exploration of a corporaexplorerobject'. The package also includes demo apps with which one can explore Jane Austen's novels and the State of the Union Addresses (data from the janeaustenr and sotu packages respectively).
This package provides SPSS'- and SAS'-like output for cross tabulations of two categorical variables (CROSSTABS) and for hierarchical loglinear analyses of two or more categorical variables (LOGLINEAR). The methods are described in Agresti (2013, ISBN:978-0-470-46363-5), Ajzen & Walker (2021, ISBN:9780429330308), Field (2018, ISBN:9781526440273), Norusis (2012, ISBN:978-0-321-74843-0), Nussbaum (2015, ISBN:978-1-84872-603-1), Stevens (2009, ISBN:978-0-8058-5903-4), Tabachnik & Fidell (2019, ISBN:9780134790541), and von Eye & Mun (2013, ISBN:978-1-118-14640-8).
Providing data to quickly visualize and analyze data from several cryptocurrencies.
Cobb's maximum likelihood method for cusp-catastrophe modeling (Grasman, van der Maas, and Wagenmakers (2009) <doi:10.18637/jss.v032.i08>; Cobb (1981), Behavioral Science, 26(1), 75-78). Includes a cusp() function for model fitting, and several utility functions for plotting, and for comparing the model to linear regression and logistic curve models.
This package provides functions to access data from public RESTful APIs including Nager.Date', World Bank API', and REST Countries API', retrieving real-time or historical data related to China, such as holidays, economic indicators, and international demographic and geopolitical indicators. Additionally, the package includes one of the largest curated collections of open datasets focused on China and Hong Kong, covering topics such as air quality, demographics, input-output tables, epidemiology, political structure, names, and social indicators. The package supports reproducible research and teaching by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: Nager.Date <https://date.nager.at/Api>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and REST Countries API <https://restcountries.com/>.
This package provides a framework that facilitates spatio-temporal analysis of climate dynamics through exploring and measuring different dimensions of climate change in space and time.
This package provides a verity of summary tables of the Covid19 cases in San Francisco. Data source: San Francisco, Department of Public Health - Population Health Division <https://datasf.org/opendata/>.
This is an add-on to the cna package <https://CRAN.R-project.org/package=cna> comprising various functions for optimizing consistency and coverage scores of models of configurational comparative methods as Coincidence Analysis (CNA) and Qualitative Comparative Analysis (QCA). The function conCovOpt() calculates con-cov optima, selectMax() selects con-cov maxima among the con-cov optima, DNFbuild() can be used to build models actually reaching those optima, and findOutcomes() identifies those factor values in analyzed data that can be modeled as outcomes. For a theoretical introduction to these functions see Baumgartner and Ambuehl (2021) <doi:10.1177/0049124121995554>.
Solves system of linear equations using (preconditioned) conjugate gradient algorithm, with improved efficiency using Armadillo templated C++ linear algebra library, and flexibility for user-specified preconditioning method. Please check <https://github.com/styvon/cPCG> for latest updates.
Create and learn Chain Event Graph (CEG) models using a Bayesian framework. It provides us with a Hierarchical Agglomerative algorithm to search the CEG model space. The package also includes several facilities for visualisations of the objects associated with a CEG. The CEG class can represent a range of relational data types, and supports arbitrary vertex, edge and graph attributes. A Chain Event Graph is a tree-based graphical model that provides a powerful graphical interface through which domain experts can easily translate a process into sequences of observed events using plain language. CEGs have been a useful class of graphical model especially to capture context-specific conditional independences. References: Collazo R, Gorgen C, Smith J. Chain Event Graph. CRC Press, ISBN 9781498729604, 2018 (forthcoming); and Barday LM, Collazo RA, Smith JQ, Thwaites PA, Nicholson AE. The Dynamic Chain Event Graph. Electronic Journal of Statistics, 9 (2) 2130-2169 <doi:10.1214/15-EJS1068>.
Balancing and rounding matrices subject to restrictions. Adjustment of matrices so that columns and rows add up to given vectors, rounding of a matrix while keeping the column and/or row totals, performing these by blocks...
This package provides a wrapper for the U.S. Census Bureau APIs that returns data frames of Census data and metadata. Available datasets include the Decennial Census, American Community Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, Population Estimates and Projections, and more.
This package provides a set of functions to implement the Combined Compromise Solution (CoCoSo) Method created by Yazdani, Zarate, Zavadskas and Turskis (2019) <doi:10.1108/MD-05-2017-0458>. This method is based on an integrated simple additive weighting and compromise exponentially weighted product model.
This package implements non-parametric analyses for clustered binary and multinomial data. The elements of the cluster are assumed exchangeable, and identical joint distribution (also known as marginal compatibility, or reproducibility) is assumed for clusters of different sizes. A trend test based on stochastic ordering is implemented. Szabo A, George EO. (2010) <doi:10.1093/biomet/asp077>; George EO, Cheon K, Yuan Y, Szabo A (2016) <doi:10.1093/biomet/asw009>.
This is a simple R package that allows to measure the stated preferences using traditional conjoint analysis method.
This data package contains monthly climate data in Germany, it can be used for heating and cooling calculations (external temperature, heating / cooling days, solar radiation).
This package provides tools for storing and managing competition results. Competition is understood as a set of games in which players gain some abstract scores. There are two ways for storing results: in long (one row per game-player) and wide (one row per game with fixed amount of players) formats. This package provides functions for creation and conversion between them. Also there are functions for computing their summary and Head-to-Head values for players. They leverage grammar of data manipulation from dplyr'.
This package provides methods for analyzing (cell) motion in two or three dimensions. Available measures include displacement, confinement ratio, autocorrelation, straightness, turning angle, and fractal dimension. Measures can be applied to entire tracks, steps, or subtracks with varying length. While the methodology has been developed for cell trajectory analysis, it is applicable to anything that moves including animals, people, or vehicles. Some of the methodology implemented in this packages was described by: Beauchemin, Dixit, and Perelson (2007) <doi:10.4049/jimmunol.178.9.5505>, Beltman, Maree, and de Boer (2009) <doi:10.1038/nri2638>, Gneiting and Schlather (2004) <doi:10.1137/S0036144501394387>, Mokhtari, Mech, Zitzmann, Hasenberg, Gunzer, and Figge (2013) <doi:10.1371/journal.pone.0080808>, Moreau, Lemaitre, Terriac, Azar, Piel, Lennon-Dumenil, and Bousso (2012) <doi:10.1016/j.immuni.2012.05.014>, Textor, Peixoto, Henrickson, Sinn, von Andrian, and Westermann (2011) <doi:10.1073/pnas.1102288108>, Textor, Sinn, and de Boer (2013) <doi:10.1186/1471-2105-14-S6-S10>, Textor, Henrickson, Mandl, von Andrian, Westermann, de Boer, and Beltman (2014) <doi:10.1371/journal.pcbi.1003752>.