Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Allows users to conduct multivariate distance matrix regression using analytic p-values and compute measures of effect size. For details on the method, see McArtor, Lubke, & Bergeman (2017) <doi:10.1007/s11336-016-9527-8>.
This package provides functions for calculating the point and interval estimates of the natural indirect effect (NIE), total effect (TE), and mediation proportion (MP), based on the product approach. We perform the methods considered in Cheng, Spiegelman, and Li (2021) Estimating the natural indirect effect and the mediation proportion via the product method.
Implementation of imputation techniques based on locally stationary wavelet time series forecasting methods from Wilson, R. E. et al. (2021) <doi:10.1007/s11222-021-09998-2>.
Three main functions about analyzing massive data (missing observations are allowed) considered from multiple layers of categories are demonstrated. Flexible and diverse applications of the function parameters make the data analyses powerful.
This package provides a collection of function to solve multiple criteria optimization problems using genetic algorithms (NSGA-II). Also included is a collection of test functions.
Enables you to create accessible modal dialogs, with confidence and with minimal configuration.
Causal moderated mediation analysis using the methods proposed by Qin and Wang (2023) <doi:10.3758/s13428-023-02095-4>. Causal moderated mediation analysis is crucial for investigating how, for whom, and where a treatment is effective by assessing the heterogeneity of mediation mechanism across individuals and contexts. This package enables researchers to estimate and test the conditional and moderated mediation effects, assess their sensitivity to unmeasured pre-treatment confounding, and visualize the results. The package is built based on the quasi-Bayesian Monte Carlo method, because it has relatively better performance at small sample sizes, and its running speed is the fastest. The package is applicable to a treatment of any scale, a binary or continuous mediator, a binary or continuous outcome, and one or more moderators of any scale.
Meta-analysis of generalized additive models and generalized additive mixed models. A typical use case is when data cannot be shared across locations, and an overall meta-analytic fit is sought. metagam provides functionality for removing individual participant data from models computed using the mgcv and gamm4 packages such that the model objects can be shared without exposing individual data. Furthermore, methods for meta-analysing these fits are provided. The implemented methods are described in Sorensen et al. (2020), <doi:10.1016/j.neuroimage.2020.117416>, extending previous works by Schwartz and Zanobetti (2000) and Crippa et al. (2018) <doi:10.6000/1929-6029.2018.07.02.1>.
Can detect relatively weak spatial genetic patterns by using Moran's Eigenvector Maps (MEM) to extract only the spatial component of genetic variation. Has applications in landscape genetics where the movement and dispersal of organisms are studied using neutral genetic variation.
Implementing a multiple imputation algorithm for multivariate data with missing and censored values under a coarsening at random assumption (Heitjan and Rubin, 1991<doi:10.1214/aos/1176348396>). The multiple imputation algorithm is based on the data augmentation algorithm proposed by Tanner and Wong (1987)<doi:10.1080/01621459.1987.10478458>. The Gibbs sampling algorithm is adopted to to update the model parameters and draw imputations of the coarse data.
This package provides a downstream bioinformatics tool to construct and assist curation of microhaplotypes from short read sequences.
Extends multiverse package (Sarma A., Kale A., Moon M., Taback N., Chevalier F., Hullman J., Kay M., 2021) <doi:10.31219/osf.io/yfbwm>, which allows users perform to create explorable multiverse analysis in R. This extension provides an additional level of abstraction to the multiverse package with the aim of creating user friendly syntax to researchers, educators, and students in statistics. The mverse syntax is designed to allow piping and takes hints from the tidyverse grammar. The package allows users to define and inspect multiverse analysis using familiar syntax in R.
This package contains functions performing Bayesian inference for meta-analytic and network meta-analytic models through Markov chain Monte Carlo algorithm. Currently, the package implements Hui Yao, Sungduk Kim, Ming-Hui Chen, Joseph G. Ibrahim, Arvind K. Shah, and Jianxin Lin (2015) <doi:10.1080/01621459.2015.1006065> and Hao Li, Daeyoung Lim, Ming-Hui Chen, Joseph G. Ibrahim, Sungduk Kim, Arvind K. Shah, Jianxin Lin (2021) <doi:10.1002/sim.8983>. For maximal computational efficiency, the Markov chain Monte Carlo samplers for each model, written in C++, are fine-tuned. This software has been developed under the auspices of the National Institutes of Health and Merck & Co., Inc., Kenilworth, NJ, USA.
In breeding experiments, mating environmental (ME) designs are very popular as mating designs are directly implemented in the field environment using block or row-column designs. Here, three functions are given related to three new methods which will generate mating diallel cross designs (Hinkelmann and Kempthorne, 1963<doi:10.2307/2333899>) or mating environmental (ME) designs along with design parameters, C matrix, eigenvalues (EVs), degree of fractionations (DF) and canonical efficiency factor (CEF). Another one function is added to check the properties of a given ME diallel cross design.
The Mass Transportation Distance rank histogram was developed to assess the reliability of scenarios with equal or different probabilities of occurrence <doi:10.1002/we.1872>.
An open-source implementation of latent variable methods and multivariate modeling tools. The focus is on exploratory analyses using dimensionality reduction methods including low dimensional embedding, classical multivariate statistical tools, and tools for enhanced interpretation of machine learning methods (i.e. intelligible models to provide important information for end-users). Target domains include extension to dedicated applications e.g. for manufacturing process modeling, spectroscopic analyses, and data mining.
This package provides a rmarkdown template that supports company logo, contact info, watermarks and more. Currently restricted to Latex'/'Markdown'; a similar HTML theme will be added in the future.
Characterization of a mid-summer drought (MSD) with precipitation based statistics. The MSD is a phenomenon of decreased rainfall during a typical rainy season. It is a feature of rainfall in much of Central America and is also found in other locations, typically those with a Mediterranean climate. Details on the metrics are in Maurer et al. (2022) <doi:10.5194/hess-26-1425-2022>.
Extends the base classes and methods of caret package for integration of base learners. The user can input the number of different base learners, and specify the final learner, along with the train-validation-test data partition split ratio. The predictions on the unseen new data is the resultant of the ensemble meta-learning <https://machinelearningmastery.com/stacking-ensemble-machine-learning-with-python/> of the heterogeneous learners aimed to reduce the generalization error in the predictive models. It significantly lowers the barrier for the practitioners to apply heterogeneous ensemble learning techniques in an amateur fashion to their everyday predictive problems.
Implement Bayesian multilevel modelling for compositional data. Compute multilevel compositional data and perform log-ratio transforms at between and within-person levels, fit Bayesian multilevel models for compositional predictors and outcomes, and run post-hoc analyses such as isotemporal substitution models. References: Le, Stanford, Dumuid, and Wiley (2025) <doi:10.1037/met0000750>, Le, Dumuid, Stanford, and Wiley (2025) <doi:10.1080/00273171.2025.2565598>.
Mixed models for repeated measures (MMRM) are a popular choice for analyzing longitudinal continuous outcomes in randomized clinical trials and beyond; see Cnaan, Laird and Slasor (1997) <doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E> for a tutorial and Mallinckrodt, Lane, Schnell, Peng and Mancuso (2008) <doi:10.1177/009286150804200402> for a review. This package implements MMRM based on the marginal linear model without random effects using Template Model Builder ('TMB') which enables fast and robust model fitting. Users can specify a variety of covariance matrices, weight observations, fit models with restricted or standard maximum likelihood inference, perform hypothesis testing with Satterthwaite or Kenward-Roger adjustment, and extract least square means estimates by using emmeans'.
This package provides helper functions, metadata utilities, and workflows for administering and managing databases on the Motherduck cloud platform. Some features require a Motherduck account (<https://motherduck.com/>).
Interactions between different biological entities are crucial for the function of biological systems. In such networks, nodes represent biological elements, such as genes, proteins and microbes, and their interactions can be defined by edges, which can be either binary or weighted. The dysregulation of these networks can be associated with different clinical conditions such as diseases and response to treatments. However, such variations often occur locally and do not concern the whole network. To capture local variations of such networks, we propose multiplex network differential analysis (MNDA). MNDA allows to quantify the variations in the local neighborhood of each node (e.g. gene) between the two given clinical states, and to test for statistical significance of such variation. Yousefi et al. (2023) <doi:10.1101/2023.01.22.525058>.
Bayesian estimation of inverse variance weighted (IVW), Burgess et al. (2013) <doi:10.1002/gepi.21758>, and MR-Egger, Bowden et al. (2015) <doi:10.1093/ije/dyv080>, summary data models for Mendelian randomization analyses.