Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Holistic generalized linear models (HGLMs) extend generalized linear models (GLMs) by enabling the possibility to add further constraints to the model. The holiglm package simplifies estimating HGLMs using convex optimization. Additional information about the package can be found in the reference manual, the README and the accompanying paper <doi:10.18637/jss.v108.i07>.
This package provides a shiny interface for a free, open-source managerial accounting-like system for health care practices. This package allows health care administrators to project revenue with monthly adjustments and procedure-specific boosts up to a 3-year period. Granular data (patient-level) to aggregated data (department- or hospital-level) can all be used as valid inputs provided historical volume and revenue data is available. For more details on managerial accounting techniques, see Brewer et al. (2015, ISBN:9780078025792).
This package provides functions for designing phase II clinical trials adjusting for the heterogeneity of the population using known subgroups or historical controls.
Implementation of characteristic palettes inspired in the Wizarding World and the Harry Potter movie franchise.
This package provides methods for implementing hierarchical age length keys to estimate fish ages from lengths using data borrowing. Users can create hierarchical age length keys and use them to assign ages given length.
This package provides functions for the management and treatment of hydrology and meteorology time-series stored in a Sqlite data base.
Identifies regime changes in streamflow runoff not explained by variations in precipitation. The package builds a flexible set of Hidden Markov Models of annual, seasonal or monthly streamflow runoff with precipitation as a predictor. Suites of models can be built for a single site, ranging from one to three states and each with differing combinations of error models and auto-correlation terms. The most parsimonious model is easily identified by AIC, and useful for understanding catchment drought non-recovery: Peterson TJ, Saft M, Peel MC & John A (2021) <doi:10.1126/science.abd5085>.
Develops algorithms for fitting, prediction, simulation and initialization of the following models (1)- hidden hybrid Markov/semi-Markov model, introduced by Guedon (2005) <doi:10.1016/j.csda.2004.05.033>, (2)- nonparametric mixture of B-splines emissions (Langrock et al., 2015 <doi:10.1111/biom.12282>), (3)- regime switching regression model (Kim et al., 2008 <doi:10.1016/j.jeconom.2007.10.002>) and auto-regressive hidden hybrid Markov/semi-Markov model, (4)- spline-based nonparametric estimation of additive state-switching models (Langrock et al., 2018 <doi:10.1111/stan.12133>) (5)- robust emission model proposed by Qin et al, 2024 <doi:10.1007/s10479-024-05989-4> (6)- several emission distributions, including mixture of multivariate normal (which can also handle missing data using EM algorithm) and multi-nomial emission (for modeling polymer or DNA sequences) (7)- tools for prediction of future state sequence, computing the score of a new sequence, splitting the samples and sequences to train and test sets, computing the information measures of the models, computing the residual useful lifetime (reliability) and many other useful tools ... (read for more description: Amini et al., 2022 <doi:10.1007/s00180-022-01248-x> and its arxiv version: <doi:10.48550/arXiv.2109.12489>).
This package provides functions to view files in raw binary form like in a hex editor. Additional functions to specify and read arbitrary binary formats.
Tracks elapsed clock time using a `hms::hms()` scalar. It was was originally developed to time Bayesian model runs. It should not be used to estimate how long extremely fast code takes to execute as the package code adds a small time cost.
Efficient tools for parsing and standardizing Australian addresses from textual data. It utilizes optimized algorithms to accurately identify and extract components of addresses, such as street names, types, and postcodes, especially for large batched data in contexts where sending addresses to internet services may be slow or inappropriate. The core functionality is built on fast string processing techniques to handle variations in address formats and abbreviations commonly found in Australian address data. Designed for data scientists, urban planners, and logistics analysts, the package facilitates the cleaning and normalization of address information, supporting better data integration and analysis in urban studies, geography, and related fields.
This package provides a data only package containing commercial domestic flights that departed Houston (IAH and HOU) in 2011.
An S4 class and several functions which utilize internally stored datasets and gauging data enable 1d water level interpolation. The S4 class (WaterLevelDataFrame) structures the computation and visualisation of 1d water level information along the German federal waterways Elbe and Rhine. hyd1d delivers 1d water level data - extracted from the FLYS database - and validated gauging data - extracted from the hydrological database WISKI7 - package-internally. For computations near real time gauging data are queried externally from the PEGELONLINE REST API <https://pegelonline.wsv.de/webservice/dokuRestapi>.
In the framework of Symbolic Data Analysis, a relatively new approach to the statistical analysis of multi-valued data, we consider histogram-valued data, i.e., data described by univariate histograms. The methods and the basic statistics for histogram-valued data are mainly based on the L2 Wasserstein metric between distributions, i.e., the Euclidean metric between quantile functions. The package contains unsupervised classification techniques, least square regression and tools for histogram-valued data and for histogram time series. An introducing paper is Irpino A. Verde R. (2015) <doi: 10.1007/s11634-014-0176-4>.
Allows to evaluate Higher Order Assortativity of complex networks defined through objects of class igraph from the package of the same name. The package returns a result also for directed and weighted graphs. References, Arcagni, A., Grassi, R., Stefani, S., & Torriero, A. (2017) <doi:10.1016/j.ejor.2017.04.028> Arcagni, A., Grassi, R., Stefani, S., & Torriero, A. (2021) <doi:10.1016/j.jbusres.2019.10.008> Arcagni, A., Cerqueti, R., & Grassi, R. (2023) <doi:10.48550/arXiv.2304.01737>.
This package provides the posterior estimates of the regression coefficients when horseshoe prior is specified. The regression models considered here are logistic model for binary response and log normal accelerated failure time model for right censored survival response. The linear model analysis is also available for completeness. All models provide deviance information criterion and widely applicable information criterion. See <doi:10.1111/rssc.12377> Maity et. al. (2019) <doi:10.1111/biom.13132> Maity et. al. (2020).
Machine learning hierarchical risk clustering portfolio allocation strategies. The implemented methods are: Hierarchical risk parity (De Prado, 2016) <DOI: 10.3905/jpm.2016.42.4.059>. Hierarchical clustering-based asset allocation (Raffinot, 2017) <DOI: 10.3905/jpm.2018.44.2.089>. Hierarchical equal risk contribution portfolio (Raffinot, 2018) <DOI: 10.2139/ssrn.3237540>. A Constrained Hierarchical Risk Parity Algorithm with Cluster-based Capital Allocation (Pfitzingera and Katzke, 2019) <https://www.ekon.sun.ac.za/wpapers/2019/wp142019/wp142019.pdf>.
Display hexagonally binned scatterplots for multi-class data, using coloured triangles to show class proportions.
Kernel density estimation with hexagonal grid for bivariate data. Hexagonal grid has many beneficial properties like equidistant neighbours and less edge bias, making it better for spatial analyses than the more commonly used rectangular grid. Carr, D. B. et al. (1987) <doi:10.2307/2289444>. Diggle, P. J. (2010) <doi:10.1201/9781420072884>. Hill, B. (2017) <https://blog.bruce-hill.com/meandering-triangles>. Jones, M. C. (1993) <doi:10.1007/BF00147776>.
This package provides a toolkit for the analysis and management of data for genes in the so-called "Human Leukocyte Antigen" (HLA) region. Functions extract reference data from the Anthony Nolan HLA Informatics Group/ImmunoGeneTics HLA GitHub repository (ANHIG/IMGTHLA) <https://github.com/ANHIG/IMGTHLA>, validate Genotype List (GL) Strings, convert between UNIFORMAT and GL String Code (GLSC) formats, translate HLA alleles and GLSCs across ImmunoPolymorphism Database (IPD) IMGT/HLA Database release versions, identify differences between pairs of alleles at a locus, generate customized, multi-position sequence alignments, trim and convert allele-names across nomenclature epochs, and extend existing data-analysis methods.
These sample data sets are intended for historians learning R. They include population, institutional, religious, military, and prosopographical data suitable for mapping, quantitative analysis, and network analysis.
This package contains functions for fitting hierarchical versions of EVSD, UVSD, DPSD, DPSD with d restricted to be positive, and our gamma signal detection model to recognition memory confidence-ratings data.
Test the significance of coefficients in high dimensional generalized linear models.
Bipartite graph-based hierarchical clustering, developed for pharmacogenomic datasets and datasets sharing the same data structure. The goal is to construct a hierarchical clustering of groups of samples based on association patterns between two sets of variables. In the context of pharmacogenomic datasets, the samples are cell lines, and the two sets of variables are typically expression levels and drug sensitivity values. For this method, sparse canonical correlation analysis from Lee, W., Lee, D., Lee, Y. and Pawitan, Y. (2011) <doi:10.2202/1544-6115.1638> is first applied to extract association patterns for each group of samples. Then, a nuclear norm-based dissimilarity measure is used to construct a dissimilarity matrix between groups based on the extracted associations. Finally, hierarchical clustering is applied.