Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Geometry shapes in R are typically represented by matrices (points, lines), with more complex shapes being lists of matrices (polygons). Geometries will convert various R objects into these shapes. Conversion functions are available at both the R level, and through Rcpp.
Similarly to the FNN package, this package allows calculation of the k nearest neighbors (kNN) of a data matrix. The implementation is based on cover trees introduced by Alina Beygelzimer, Sham Kakade, and John Langford (2006) doi:10.1145/1143844.1143857.
Computes local polynomial estimators for the regression and also density. It comprises several different utilities to handle kernel estimators.
The labeling package provides a range of axis labeling algorithms.
Raw vectors in R are useful for storing a single binary object. What if you want to put a vector of them in a data frame? The blob package provides the blob object, a list of raw vectors, suitable for use as a column in data frame.
This package provides model selection tools and selfStart functions to fit parametric curves in the nls, nlsList and nlme frameworks.
This package provides an R implementation of the Octave package signal, containing a variety of signal processing tools, such as signal generation and measurement, correlation and convolution, filtering, filter design, filter analysis and conversion, power spectrum analysis, system identification, decimation and sample rate change, and windowing.
This package provides suite of functions to work with regression model broom::tidy() tibbles. The suite includes functions to group regression model terms by variable, insert reference and header rows for categorical variables, add variable labels, and more.
This package provides chronological R objects which can handle dates and times.
This package provides tools to conditionally rotate or back-up files based on their size or the date of the last backup; inspired by the utility logrotate'.
This package provides five omnibus tests for testing the composite hypothesis of normality.
This package provides tools and functions for parsing, rendering and operating on semantic version strings. Semantic versioning is a simple set of rules and requirements that dictate how version numbers are assigned and incremented as outlined at http://semver.org.
R comes with a suite of utilities for linear algebra with "numeric" (double precision) vectors/matrices. However, sometimes single precision (or less!) is more than enough for a particular task. This package extends R's linear algebra facilities to include 32-bit float (single precision) data. Float vectors/matrices have half the precision of their "numeric"-type counterparts but are generally faster to numerically operate on, for a performance vs accuracy trade-off.
This package provides a non-linear model, termed ACME, that reflects a parsimonious biological model for allelic contributions of cis-acting eQTLs. With non-linear least-squares algorithm the maximum likelihood parameters can be estimated. The ACME model provides interpretable effect size estimates and p-values with well controlled Type-I error.
This package performs penalized multivariate analysis: a penalized matrix decomposition, sparse principal components analysis, and sparse canonical correlation analysis.
This package is an implementation of a regularized regression prediction and empirical Bayes method to recover the true gene expression profile in noisy and sparse single-cell RNA-seq data. In single-cell RNA sequencing (scRNA-seq) studies, only a small fraction of the transcripts present in each cell are sequenced. This leads to unreliable quantification of genes with low or moderate expression, which hinders downstream analysis. This package single-cell analysis via expression recovery (SAVER) implements an expression recovery method for unique molecule index (UMI)-based scRNA-seq data that borrows information across genes and cells to provide accurate expression estimates for all genes.
This package contains functions useful for data screening, testing moderation, mediation and estimating power.
This package creates dummy columns from columns that have categorical variables (character or factor types). You can also specify which columns to make dummies out of, or which columns to ignore. Also creates dummy rows from character, factor, and Date columns. This package provides a significant speed increase from creating dummy variables through model.matrix().
This package lets you create in just a few lines of R code a nice user interface to modify the data or the graphical parameters of one or multiple interactive charts. It is useful to quickly explore visually some data or for package developers to generate user interfaces easy to maintain.
This package provides a fast implementation of hierarchical clustering.
This package provides tools to estimate parameters of accumulated damage (load duration) models based on failure time data under a Bayesian framework, using Approximate Bayesian Computation (ABC), and to assess long-term reliability under stochastic load profiles.
This package represents an implementation of functions to optimize ordering of nodes in a dendrogram, without affecting the meaning of the dendrogram. A dendrogram can be sorted based on the average distance of subtrees, or based on the smallest distance value. These sorting methods improve readability and interpretability of tree structure, especially for tasks such as comparison of different distance measures or linkage types and identification of tight clusters and outliers. As a result, it also introduces more meaningful reordering for a coupled heatmap visualization.
This package provides useful tools for both users and developers of packages for fitting Bayesian models or working with output from Bayesian models. The primary goals of the package are to:
Efficiently convert between many different useful formats of draws (samples) from posterior or prior distributions.
Provide consistent methods for operations commonly performed on draws, for example, subsetting, binding, or mutating draws.
Provide various summaries of draws in convenient formats.
Provide lightweight implementations of state of the art posterior inference diagnostics.
This package provides interactive visualizations for profiling R code.